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This paper investigates the task-space prescribed performance tracking control problem of free-floating 
space manipulators with kinematic and dynamic uncertainty. In order to formulate and solve this 
prescribed performance tracking problem on SE(3), we first select a suitable tracking error vector 
and prescribed performance bound which characterizes the minimum convergence rate and maximum 
overshoot of the tracking error vector. Then, two robust tracking controllers based on the prescribed 
performance bound are designed to solve the tracking control problem. Compared with the existing 
work on the guaranteeing prescribed performance control, a linear switching surface is incorporated 
into the controller design procedure, which makes it easy to cope with kinematic and dynamic 
uncertainty. A rigorous mathematical stability proof is given. Finally, numerical simulations are presented 
to demonstrate the effectiveness and robustness of the proposed controller.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Free-Floating Space Manipulators (FFSMs) have increasingly 
been utilized to extend human manipulation in cost-expensive 
and hazardous space environments, such as capturing space de-
bris, conducting on-orbit servicing, executing maintenance and 
construction of the International Space Station, etc [1,2]. Some 
well-known methods have been developed to solve kinematic and 
dynamic modeling problems of FFSMs, such as the generalized 
Jacobian matrix [3,4], the virtual manipulator approach [5], the 
dynamically equivalent manipulator approach [6], the endogenous 
configuration space approach [7], etc. There exist two significant 
differences between FFSMs and earth-based robots. On one hand, 
it is difficult to find a closed-form forward kinematics solution for 
FFSMs, because the attitude of the spacecraft depends not only on 
the current joint positions, but also on the path taken to reach 
the configuration [8]. On the other hand, if the spacecraft has a 
total mass close to the mass of the manipulator, there exists the 
high dynamic coupling between the manipulator and the base. The 
generalized Jacobian matrix of the FFSM depends not only on the 
kinematic parameters (e.g., link lengths, link twist angles, etc.), but 
also on the dynamic parameters (i.e., masses and inertias of rigid 
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bodies). As a result, kinematic and dynamic equations of FFSMs 
will both be affected by dynamic parameter variations or uncer-
tainty. Besides, results of [6] illustrate that the dynamic coupling 
decreases as the mass of the spacecraft increases, and if the mass 
of the manipulator arm is negligible compared to the spacecraft, 
the generalized Jacobian matrix of FFSMs can be best approxi-
mated by the fixed-based manipulator Jacobian. In these cases, the 
control algorithms applied to earth-based robots can be used for 
FFSMs.

When the coupling dynamic property of the space manipula-
tor cannot be ignored, the task-space trajectory tracking control 
problem of FFSMs with dynamic uncertainty are different from 
the earth-based manipulator. For example, the adaptive tracking 
controllers developed in [9] for earth-base manipulators cannot be 
directly applied to FFSMs, because the dynamic equations of FFSMs 
cannot be linearly parameterized [10]. To overcome the nonlinearly 
parametric feature of the dynamics of FFSMs, the normal form 
augmentation approach is reported in [11]. However, the adaptive 
controller developed in [11] requires the measurement of the lin-
ear and angular accelerations of the spacecraft, which is critical 
from the viewpoint of practical implementation. To avoid the mea-
surement of the spacecraft’s acceleration, the adaptive controller in 
joint space [12], the pseudo-arm approach [13], the adaptive track-
ing controller based on the inverted chain approach [14] and the 
passivity based adaptive Jacobian tracking controller [15,16] have 
been proposed. In addition, the neural network has been applied 
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Nomenclature

�I ,�B0 ,�T the inertia frame, the base frame and the tool 
frame, respectively;

SO (3) ,SE (3) the special orthogonal group and the special Eu-
clidean group, respectively;

so (3) , se (3) the Lie algebras of the Lie groups SO (3) and 
SE (3), respectively;

ξ j ∈ R
6 the twist coordinates associated with the joint J j ;

Rib0 , Rit ∈ SO(3) the rotation matrices of �B0 and �T with re-
spect to �I , respectively;

p0, pt ∈ R
3 the position vectors of the origins of �B0 and �T
in �I , respectively;

gib0 , git ∈ SE(3) the configurations of the base and the end-
effector, respectively;

V k
ij ∈R

6 the generalized velocity of � j with respect to �i , rep-

resented in �k , i.e. V k
ij =

[(
vk

i j

)T
,
(
ωk

i j

)T
]T

;

� ∈ R
n the joint angle vector, i.e. � = [θ1, θ2, . . . , θn]T;

�̇ ∈ R
n the joint angular velocity vector, i.e. �̇ =

[θ̇1, θ̇2, . . . , θ̇n]T;
�0 the initial momentum of the system;
Jb,� Jb ∈R

6×6 the nominal term and the uncertainty of the 
Jacobian matrix of the base, respectively;

Jm,� Jm ∈ R
6×n the nominal term and the uncertainty of the 

Jacobian matrix of the manipulator, respectively;
Mbb,�Mbb the nominal term and the uncertainty of the gen-

eralized inertia matrix of the base, respectively;
Mbm,�Mbm the nominal term and the uncertainty of the cou-

pled generalized inertia matrix of the base satellite 
and the manipulator, respectively;

Mmm,�Mmm the nominal term and the uncertainty of the 
generalized inertia matrix of the manipulator, respec-
tively;

to approximate the model uncertainty and external disturbance 
[17,18]. Direct image-based optimal control scheme is also de-
signed to solve the tracking control problem of FFSMs in the task 
space [19]. In [20], the effect of the nonzero initial angular mo-
mentum on the free-floating space manipulator system has been 
studied. The transverse function approach in [21] can be used to 
solve the kinematic control problem of FFSMs, because the angular 
momentum conservation condition is a nonholonomic kinematic 
constraint.

The present work is inspired by the work in [22,23], in which 
the transient performance of the tracking error is characterised 
as inequality constraints, and the error transformation technique 
is proposed to transform the ‘constrained’ system to an equiva-
lent ‘unconstrained’ one. This technique has been utilized in the 
force/position tracking control for robots [24,25], and in the track-
ing control for flexible joint robots [26]. However, the above work 
can only guarantee the uniformly ultimate boundedness of the 
tracking errors. In this article, we will utilize the modified error 
transformation technique proposed in [27] to ensure the tracking 
error to converge to zero. Different from the back-stepping con-
trol scheme reported in [27], a novel robust control scheme based 
on the sliding mode is designed in this paper to solve the task-
space prescribed performance tracking control problem of FFSMs 
with kinematic and dynamic uncertainty. Moreover, the proposed 
controller can also guarantee certain predefined minimum conver-
gence rate, maximum steady-state error as well as overshoot con-
cerning the tracking error. However, the proposed robust controller 
requires the information on the bound of the lumped disturbance. 
As a result, we need to choose a large design parameter to en-
sure robust stability of the closed-loop system, which will result 
in substantial chattering of the control effort. In order to elimi-
nate the chattering phenomenon and resolve the overestimating 
problem, an adaptive-gain super-twisting disturbance observer is 
designed to estimate the upper bound of the uncertainty and ex-
ternal disturbance. The rest of this paper is organised as follows: 
Section 2 describes the task-space prescribed performance track-
ing control problem for FFSMs. In Section 3, two robust tracking 
controllers with guaranteed prescribed performance are designed. 
After that, numerical simulations for a 2 degrees of freedom (DOF) 
planar free-floating space manipulator are presented in Section 4
to validate the proposed control laws. Finally, we conclude the pa-
per in Section 5.

2. Problem formulation

2.1. Kinematics and dynamics of free-floating space manipulators

We consider a free-floating space manipulator in the inertial 
frame �I as shown in Fig. 1. An n DOF serial manipulator with 
revolute or prismatic joints is mounted on the free-floating satel-
lite base. Let �B0 denote the base frame which is attached at the 
center of mass of the satellite. The configuration of the base is de-
fined as the following homogeneous matrix

gib0 (t) =
[

Rib0 p0
O 1×3 1

]
∈ SE (3) , (1)

where Rib0 ∈ SO (3) is the rotation matrix of the base frame rel-
ative to the inertial frame, p0 ∈ R

3 is the position of the center 
of mass of the base in the inertial frame. We can also denote 
gib0 ∈ SE(3) by the order pair 

(
Rib0 , p0

)
. The body velocity of the 

base V b0
ib0

can be given by

V b0
ib0

=
[

vb0
ib0

ω
b0
ib0

]
=

⎡⎣ RT
ib0

ṗ0(
RT

ib0
Ṙ ib0

)∨

⎤⎦ , (2)

where vb0
ib0

∈ R
3 and ωb0

ib0
∈ R

3 are the body linear velocity and 
body angular velocity of the base, respectively. The vee map (·)∨ :
so (3) →R

3 is given by⎡⎣ 0 −x3 x2
x3 0 −x1

−x2 x1 0

⎤⎦∨
=

⎡⎣ x1
x2
x3

⎤⎦ . (3)

Let �T denote the tool frame attached at the end-effector of the 
manipulator. The configuration of the end-effector is represented 
as

git (t) =
[

Rit pt

O 1×3 1

]
∈ SE (3) , (4)

where Rit is the rotation matrix of the end-effector relative to the 
inertial frame, pt ∈ R

3 is the position of the origin of the tool 
frame in the inertial frame. According to our early work reported 
on [28], git can be obtained by the product of exponentials for-
mula (see Appendix A for full details)

git = gib0 eξ̂1θ1 · · · eξ̂nθn gb0t (0) , (5)
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