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The mesh deformation using radial basis functions (RBFs) is widely used in aerodynamic applications in 
the context of design & optimization and aeroelasticity. One reason is the good performance for test cases 
requiring only a few number of support points. But in test cases with complex deflection fields, requiring 
a large number of support points, the performance of the method degenerates. To improve an existing 
RBFs-based mesh-deformation method, an efficient multiple point selection method has been developed 
based on the conventional Greedy method. The interpolation error function of the RBFs-based model is 
analyzed, and multiple points with maximum local error are selected simultaneously into the support 
set, with which an interpolation model will be finally built to compute the displacements of the volume 
mesh nodes. To avoid too many redundant points for building the interpolation model, a threshold factor 
is conceived to limit the number of points selected. The computational cost by the Greedy method, 
the multi-level data reduction method and the developed method, are theoretically compared. Typical 
deformation problems are chosen as test cases for demonstrating current implementations, like a ninety-
degree rotation of a NACA 0012 airfoil, the adjustment of the position of the slat and the flap of a high-lift 
airfoil, the bending of the DLR F6 configuration, and the shape modification of a hypersonic Rocket-Based 
Combined Cycle space vehicle. Further, the effect of the threshold factor is studied. The results show 
that the developed mesh-deformation method has a better efficiency than the Greedy method and the 
multi-level data reduction method, especially for test cases with complex deflection fields.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the context of design and optimization of modern flight ve-
hicles [1–3], new or adjusted meshes have to be provided, if the 
shape changes. They can be obtained by two ways: mesh regen-
eration and mesh deformation. The mesh-regeneration method is 
more flexible, but is computationally expensive for complex con-
figurations with large number of mesh nodes. In comparison, the 
mesh-deformation method only transmits the displacement of the 
configuration surface into the volume mesh nodes, without chang-
ing the scale and the topology of the baseline mesh. Thus, the 
mesh-deformation method is more efficient and also suitable for 
aeroelastic simulations and automated optimization processes.

Currently, many mesh-deformation methods are in use. Gaiton-
de et al. developed a polynomial interpolation method [4,5], which 
is well suited for structured meshes with simple topologies. The 
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spring interpolation, the elastic solid method and the Delaunay 
graph mapping are suitable for unstructured as well as for struc-
tured meshes. The spring interpolation was first proposed by 
Batina [6,7], in which the mesh is regarded as a network of springs. 
Hence the new coordinates of the mesh nodes can be computed 
by solving the force-equilibrium equations of the network. This 
method is robust but inefficient for complex configurations. The 
elastic solid method [8,9] treats the mesh like an elastic solid and 
the displacement of the boundary as loads on the solid, thus new 
mesh can be obtained by solving the equilibrium equations of the 
elastic solid. This method can handle large deformation, but has 
low efficiency with regard to large number of mesh nodes. The 
Delaunay graph mapping [10,11] transfers the displacement of the 
surface into the background mesh, then updates the coordinates 
of the mesh nodes based on the background mesh. This method 
is efficient, simple, and suitable for meshes with different topolo-
gies. But it is limited to configurations with convex boundaries and 
good background meshes, otherwise the deformed mesh will be in 
bad quality.

In recent years, the mesh-deformation method using RBFs be-
comes more popular [12–17]. Boer was one of the first to have 
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applied the RBFs in mesh deformation, by building the RBFs-based 
model using the surface mesh nodes and computing new mesh co-
ordinates through the model [18]. The mesh-deformation method 
based on the RBFs has following merits: a) there is no need of 
topology information of the mesh, and the data structure is simple; 
b) the method is suitable for any type of mesh such as struc-
tured, unstructured or structured/unstructured hybrid mesh; c) it 
can handle complex deflection fields. Along with increasing the 
number of the surface mesh nodes, the efficiency of the RBFs-
based mesh-deformation method decreases fast. One way to solve 
this problem is to select just a set of surface mesh nodes as sup-
port points building the RBFs-based model. Rendall et al. [19–23]
has used the Greedy method to select the surface mesh nodes 
with maximum error in each iteration step to build the RBFs-
based model, trying to reduce the number of support points on 
the premise of a good interpolation accuracy. Wang et al. [24,25]
introduced a subspace into the Greedy method, and developed 
the multi-level data reduction (MLDR) method, which can select 
support points more efficiently. Besides, Xie et al. [26] improved 
the deformation efficiency further by employing the subspace into 
updating the volume mesh coordinates. Liu et al. developed a two-
step mesh-deformation strategy based on the RBFs [27]. Gillebaart 
et al. have proposed an adaptive RBFs-based mesh-deformation 
method by keeping track of the boundary error throughout the 
simulation and the re-selection [28].

In the present work, we propose an efficient multiple point-
selection method based on the Greedy method for mesh defor-
mation using RBFs. The idea is to build a RBFs-based model at 
first, then identify multiple peaks of the error function for the in-
terpolation model, which are used to expand the set of support 
points for constructing RBFs-based models. After some iterations, 
the RBFs-based model satisfies the specified error criterion. Then 
the model can be finally used to compute the displacements of the 
volume mesh nodes. The theory of the mesh deformation based 
on the RBFs is briefly explained in Section 2. The developed mesh-
deformation method is detailed in Section 3. In Section 4, the ad-
vantages of the developed method are discussed and demonstrated 
using four applications: ninety-degree rotation of the NACA 0012 
airfoil with an unstructured mesh; adjusting the setting of the slat 
and the flap of a three-element high-lift airfoil with a hybrid mesh; 
bending the DLR F6 configuration with an unstructured/structured 
hybrid mesh; changing the shape of a configuration by modifying 
several design variables of a hypersonic Rocket-Based Combined 
Cycle (RBCC) space vehicle with a structured mesh. The effect of 
the threshold factor on deforming the shapes by the developed 
method is studied. Finally, conclusions are drawn in Section 5.

2. Mesh deformation based on radial basis functions

The basic form of the RBFs-based model using for mesh defor-
mation can be written as

F (r) =
Nb∑

i=1

ωiϕ
(‖r − ri‖

)
(1)

where, F (r) is the displacement vector at the position r; Nb is the 
number of the selected support points; i is the index of the sup-
port point; ri is the position vector of the ith support point; ωi is 
the weight coefficient according to the ith support point; ‖r − ri‖
is the norm between the mesh node and the support point re-
spectively located at r and ri ; ϕ(‖r − ri‖) is the general form 
of a certain kind of radial basis function adopted. In comparison 
with the global RBFs, the compactly supported positive definite ba-
sis function is suitable for problems with large number of mesh 
nodes [29]. Thus, the Wendland’s series are chosen as the basis 
functions [30].

In the RBFs-based mesh deformation, the surface mesh nodes 
are used as the support points for building the interpolation 
model. The model can be described by

�Sb = ΦbW (2)

where, �Sb is the displacement matrix of the mesh nodes on 
the surface, expressed as �Sb = {�s1, �s2, . . . , �sNb }T, of which 
�si = {�xi, �yi, �zi}T is the displacement vector of the ith sur-
face mesh node. W is the weight-coefficient matrix {ωx, ωy, ωz}
to be solved, of which ωx = {ωx

1, ω
x
2, . . . , ω

x
Nb

}T, ωy = {ωy
1 , ωy

2 ,

. . . , ωy
Nb

}T, and ωz = {ωz
1, ω

z
2, . . . , ω

z
Nb

}T. Φb is the basis matrix 
containing basis functions, defined as

Φb =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ1,1 . . . ϕ1,i . . . ϕ1,Nb
...

...
...

...
...

ϕ j,1 · · · ϕ j,i · · · ϕ j,Nb
...

...
...

...
... · · ·

ϕNb,1 · · · ϕNb,i · · · ϕNb,Nb

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3)

where, ϕ j,i = ϕ(‖r j −ri‖) is the basis function between the surface 
mesh nodes j and i. Hence the weight coefficient matrix can be 
obtained by solving Eq. (2). Further, the displacements of the vol-
ume mesh nodes can be calculated using the interpolation model

�Sv = ΦvW (4)

where, Φv is built by all the volume mesh nodes and the sur-
face mesh nodes, expressed as Φv = {ϕ j,1, ϕ j,2, . . . , ϕ j,Nb

} and 
j = 1, 2, . . . , Nv, where Nv is the number of the volume mesh 
nodes. Thus, the new coordinates of the volume mesh nodes can 
be updated by

Snew = Sold + �Sv (5)

3. Efficient multiple point-selection method

The computational cost of the RBFs-based mesh-deformation 
method depends on the number of the surface mesh nodes Nb and 
the number of the volume mesh nodes Nv, according to Eq. (2)
and Eq. (4). For standard problems, Eq. (2) has to be solved only 
once, and the solution can then be reused for a modified deflection 
field. However, if the configuration is complicated and the deflec-
tion field is complex, a large number of surface and volume mesh 
nodes are involved in solving Eq. (2). Hence the conventional RBFs-
based mesh-deformation method is infeasible because of the huge 
computational cost. Thus, the idea to solve the above problem is 
to select just a set of surface mesh nodes as support points, which 
will be used to build a reduced-order RBFs-based model with a 
promise of sufficient model accuracy. Therefore, the deformation 
process can be more efficient, and can guarantee a good qual-
ity of the deformed surface mesh. The Greedy method by Rendall 
[21] generates an initial support set of samples to fit the RBFs-
based model, then adds one surface mesh node with maximum 
interpolation error into the support set gradually in the following 
iterations until the RBFs-based model is sufficient accurate. Thus, 
the final set of the support points can be used to build an inter-
polation model to compute the displacements of the volume mesh 
nodes. For problems with tens of thousands surface mesh nodes, 
the Greedy method converges quite slowly.

We developed an efficient multiple point selection method 
based on the Greedy method. The multiple nodes with maximum 
local interpolation error are selected to expand the support set 
simultaneously in each iteration step, in order to improve the ef-
ficiency of identifying a support set that can be used to build an 
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