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This paper presents a generalized layerwise higher-order shear deformation theory for static, free 
vibration and buckling analyses of symmetric laminated composite and sandwich plates using improved 
meshfree radial point interpolation method (iRPIM). The approach comes from a layerwise model 
combined with a generalized higher-order shear deformation theory. In other words, we impose the 
continuity on the interface of each layer for the in-plane displacements and transverse shear stresses. 
This yields more adequate solution for sandwich structures which present the significant difference of 
properties between the core sheet and the face ones. As a result, transverse shear stresses are accurately 
achieved as compared with the analytical ones. The present iRPIM shows stability and high accuracy with 
respect to the uniquely proposed correlation function. A simple but effective enforcement based on the 
concept of the rotation-free of essential boundary conditions yields significant advantage of computations. 
The numerical results are provided and compared well with other published solutions.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Materials technology industries have been developed strongly 
in the 21st century. Herein composite materials play a key role in 
scientific and technological achievements of disciplines. Compos-
ite materials are being applied in various engineering fields such 
as aerospace, automotive, marine, civil engineering, etc. Formed 
by combining two or more orthotropic layers with different mate-
rials, laminated composite structures achieved better engineering 
properties than the classical materials, such as high-stiffness, high-
strength, lightweight, strength-to-weight ratios, long fatigue life, 
wear resistance, corrosion resistance, thermal properties, etc. [1]. 
In addition to other important features of composite structures, 
sandwich structures are used when stacking two types of laminae, 
so-called core and face sheets, which have highly different mate-
rial properties. A good knowledge about their behaviors subjected 
to loading is really necessary for using them effectively.

In recent decades, several plate theories have been developed 
to analyze laminated composite and sandwich plates from two 

* Corresponding author at: Duy Tan University, Danang, Viet Nam.
E-mail address: nguyenxuanhung@duytan.edu.vn (H. Nguyen-Xuan).

original models: equivalent single-layer model (ESL) and layerwise 
model (LW). Generally, the equivalent single-layer models, which 
consider the same degrees of freedom for all laminate layers, in-
clude classical laminate plate theory (CLPT) [2]. This theory is ac-
curate for thin plates and based on the assumption that the shear 
deformation effect is negligible. The first-order shear deformation 
theory (FSDT) [3–5] is suitable for both moderately thick and thin 
plates, but the shear correction factors cause significant influences 
on the accuracy of the underlying solution. The higher-order shear 
deformation theories (HSDTs) [6–8] have been therefore devised. 
Due to including the high-order contribution of shear deforma-
tions, HSDTs do not require shear correction factors. It is evident 
that the displacements and transverse shear stresses obtained from 
HSDTs are much better than those of FSDT model. However, it is 
known for analysis of sandwich plates that the effects of differ-
ent characteristic material properties through the plate thickness, 
i.e. between core and face sheets, are large. Hence, the accuracy 
of the obtained results based on ELS models related to transverse 
shear stresses and high frequencies is inadequate. Consequently, 
layerwise theories which impose independent degrees of freedom 
for each layer have been developed. Among them, the generalized 
layerwise model proposed by Reddy [9] and the simple expression 
forms proposed by Ferreira [10] have become popular. For instance, 
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the given model in [10] assumed a first-order shear deforma-
tion theory for displacement field with independent rotations in 
each layer and displacement continuity at contact position of the 
layer interfaces. Hereby, the highly accurate solutions have been 
achieved. Alternatively, regarding zigzag effects and fulfillment of 
interlaminar continuity, several other layerwise or zigzag models 
have been presented by Mau [11], Chou and Carleone [12], Di Sci-
uva [13], Toledano and Murakami [14] and Ren [15], Tessler et al. 
[16–18], and so forth. In case of special materials, especially het-
erogeneous auxetics with negative Poisson’s ratio, the influence of 
auxeticity becomes more noticeable, which needs the elasticity ap-
proach instead of employing the approximate plate theories [19], 
or even the other approached theory such as zigzag theory [20]
and global–local zigzag theory [21]. Thanks to the work of Shari-
ayat et al., global–local zigzag theory is also extended to analyze 
highly sensitive structures like asymmetric orthotropic sandwich 
plates with single/dual cores [22] or even imperfect laminated 
and sandwich cylindrical shells [23]. Besides, trigonometric layer-
wise deformation theories were applied for analyzing composite 
beams by Shimpi [24] and Arya et al. [25], and then composite 
and sandwich plates by Roque et al. [26,27]. The special concept of 
these theories is a combination of HSDTs and LW without requir-
ing additional degrees of freedom while ensuring the continuity of 
displacement and transverse shear stresses fields at the interface 
layers.

The finite element method (FEM) has been known as the most 
popular and powerful tool in engineering field from academic to 
industrial applications. Because of relying on the mesh discretiza-
tion, the error of FEM solution is significant when the physical 
domain has special features such as curved boundary, subjected 
to concentrated load or distorted meshes, spread and expansion 
cracks in structures, and so on. Such drawbacks can be overcome 
by meshless methods. Belytschko et al. [28] proposed a meshless 
method based on a weak form of a so-called the Element Free 
Galerkin (EFG) which used the moving least square (MLS) to con-
struct the shape functions. EFG has been extensively applied to 
a wide class of mechanics problems. It showed the high accu-
racy of stress discontinuities problems involving volumetric lock-
ing [28] and especially for limit analysis problems [29] and so 
on. However, EFG exhibits some drawbacks such as dissatisfying 
the Kronecker-delta property and therefore, the essential bound-
ary conditions are violated. One of alternative methods is Point 
Interpolation Method (PIM), which is based on the Galerkin formu-
lation, was proposed by Liu [30], Liu and Gu [31,32]. The PIM uses 
polynomial basis shape functions. As a result, the approximated 
interpolations pass through the function values at each scattered 
node within the support domain and the PIM shape functions also 
satisfy the Kronecker-delta property. Furthermore, the other type 
of PIM shape functions has been extended. It is named as radial 
basis functions (RBFs) so-called Radial PIM (RPIM) [33,34]. Note 
that the interpolation coefficients are usually determined if the 
support domain and the basis function are carefully chosen. Hence, 
a great advantage of RPIM can overcome the singularity problem 
of moment matrix so that it can be applied to arbitrary nodal dis-
tributions [35].

For linear analysis of composite materials based on layerwise 
plate theory, many studies have been reported up to date. Typi-
cally, with exception of standard FEM, Ferreira et al. successfully 
developed LW with various methods listed in [10,36], Thai et al. 
have recently used isogeometric analysis (IGA) [37,38], Roque et al. 
proposed trigonometric layerwise deformation theories using ra-
dial basis functions [26] and multiquadrics [27]. Herein, this paper 
focuses on the application of RPIM to study static, free vibration 
and buckling analyses of laminated composite and sandwich plates 
based on a generalized layerwise higher-order shear deformation 
theory.

Fig. 1. Domain representation and support domain of 2D model.

The outline of this paper is organized as follows. A brief ap-
proach of meshfree RPIM is introduced in the second section. The 
governing equations using RPIM based on generalized layerwise 
higher-order shear deformation theory are developed and formu-
lated for laminated composite and sandwich plates in Section 3. 
Next, in Section 4, various numerical examples for static, free vi-
bration and buckling analyses are considered and compared with 
other published solutions. At last, the conclusions of this paper are 
given and discussed in Section 5.

2. A brief of meshfree radial point interpolation method

2.1. Radial point interpolation method

Let us consider a support domain x that has a set of arbitrar-
ily distributed nodes Pi(x) (i = 1, 2, . . . , n), as shown in Fig. 1. The 
approximate function u(x) can be estimated to all values of nodes 
within the support domain based on Radial Point Interpolation 
Method (RPIM) by using radial basis function Bi(x) and polyno-
mial basis function p j(x) [39]. Nodal value of approximate function 
evaluated at the node xi inside support domain is assumed to 
be ui .

u(x) =
n∑

i=1

Bi(x)ai +
m∑

j=1

p j(x)b j = BT (x)a + pT (x)b (1)

where ai , b j are the coefficients for Bi(x) and p j(x), respectively. 
n is the number of scatter nodes in support domain x, m is the 
number of polynomial basis functions (usually, m < n). The terms 
in Eq. (1) are defined as follows

aT = [a1,a2,a3, . . . ,an]
bT = [b1,b2,b3, . . . ,bm]
BT (x) = [

B1(x), B2(x), B3(x), . . . , Bn(x)
]

pT (x) = [
p1(x), p2(x), p3(x), . . . , pm(x)

]
(2)

Radial basis function Bi(x) is a function of distance ri that has 
the following general form

Bi(x) = Bi(ri) = Bi(x, y) (3)

where ri = ‖x − xi‖ is the distance between the interpolating point 
(x, y) and the node (xi , yi ).

In the case of two-dimensional problem, polynomial function 
chosen from Pascal’s triangle is given as

pT (x) = [
1, x, y, x2, xy, y2, . . .

]
(4)

To determine the coefficients ai and b j , the interpolation is 
enforced to pass through all n scattered nodal points within the 
support domain. The interpolation at the kth point has the form
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