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a b s t r a c t

To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo

(BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to

the desired accuracy level. BMC also provides a possibility of considering more priors. In other words,

different priors can be integrated into one model by using BMC to further reduce cost of simulations.

This study suggests speeding up the simulation process by considering the logical dependence of

neighboring points as prior information. This information is used in the BMC method to produce a

predictive tool through the simulation process. The general methodology and algorithm of BMC method

are presented in this paper. The BMC method is applied to the simplified break water model as well as

the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC

and Dynamic Bounds methods.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the framework of determining reliability of complex
systems, we will focus our attention in this paper on the Monte
Carlo methods. This is necessary because Monte Carlo methods
are flexible and more suited for dealing with complicated
problems. The Monte Carlo family of methods includes the so-
called variance optimization schemes for improving the computa-
tional efficiency. Among these the most widely used are the
importance sampling (IS), explained in [5], directional sampling
(DS), presented in [6] and the extended methods addressed by
[17]. Each method has its advantages and disadvantages when it
is coupled with complex problems. These existing methods have
been discussed in greater details in [7, Chapter 2].

In general, which Monte Carlo simulation is widely considered to
be among the most robust and most generally applicable method for
the reliability analysis of engineering structures. The Monte Carlo
technique considers each simulation independent of the previous
simulations. The absence of systematic errors and the fact that its
error analysis is well-understood are properties that many competing
methods lack. A drawback, however, is the often large number of runs
needed, particularly in complex models, where each run may entail a
finite element analysis or other time consuming procedure. Variance
reduction methods may be applied to reduce simulation cost as was
reviewed above. In this paper, we describe a method to reduce the
simulation cost, while retaining the accuracy of Monte Carlo. Here, we
present a method to speed up the simulation process by producing a
predictive and judgmental tool. Having this tool, we will be able to
predict the response of model or conclude with certainty that if the
sample is to be accepted or rejected. We achieve this by implement-

ing some logical dependence among neighboring pixels (points). This
is obtained considering the fact that each randomly generated point
may be estimated by its neighboring pixels (points). This implemen-
tation is done by using the Bayesian technique which is, in fact, based
on the Bayesian interpolation in [1]. As a result, we assign a
probability density function (PDF) to an arbitrary or randomly
generated point. Therefore, given the desired level of tolerance, we
judge the accuracy of prediction for this point. As a result, the
information of the neighborhoods are implemented into the model. In
this technique, there is still possibility of considering more priors to
the model that can be used for different models. For instance, one
may be interested in integrating the monotonic behavior of flood
defence structures as presented in [9] to further reduce calculation
efforts by using the BMC method.

This study requires a background of Bayesian techniques as
well as Monte Carlo methods. The Bayesian approach is well
described in [3]. An instructive reference for applying Bayes’
Theorem into practice is [12]. The Monte Carlo method in details
is presented for instance in [5,2].

The layout of this paper as follows. Section 2 presents an
overview of the BMC method. The prior, likelihood, and posterior
of the BMC method are extensively described in Sections 3–5,
respectively. Further information on the mathematical formula
and methodology is presented in Section 5.1. The BMC method
and its algorithm are described in Section 7. Numerical examples
are presented in Section 8. Conclusions are presented in Section 9.

2. Overview

To start modeling the problem, we assume that there is a
signal U which is to be estimated at a number of discrete points.
These discrete points will be called pixels, presented by ui. These
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pixels present a vector of pixels u� ðu0, . . . ,uvþ1Þ. Therefore, there
are totally v+2 pixels. The first and last pixels, presented by u0

and uv + 1, are called boundary pixels and are treated separately. As
a result, v presents the number of interior pixels. The total
number of observed data points is equal to n which are
distributed in arbitrary (or random) locations among the pixels.
Therefore, the maximum value of n is equal to v+2 when there is
an observed data point for each pixel (nrvþ2). Locations of the
observed data points are collected in vector c that has n elements
presented by ci, where i¼1,2,y,n. The vector of observed data
points is called d� ðd1, . . . ,dnÞ, and its elements are presented by
di. Fig. 1 presents an illustration of the internal and boundary
pixels as well as data points. According to this figure, for instance,
c� ð1,v�1,vþ2Þ.

The univariate probability density function (PDF) for an
arbitrary pixel, given the data D and the informational context I,
will be found by integrating out all pixels. In this case the sum
rule is applied and the product is integrated all over the
multivariate posterior PDF of all pixels of U except the required
pixel uj:

PðujjD,IÞ ¼

Z
PðUjD,IÞ. . . dui . . .|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ia j

: ð1Þ

Also, according to the Bayes’ rule we have

PðUjD,IÞ ¼
PðDjU,IÞPðUjIÞ

PðDjIÞ
, ð2Þ

where PðDjIÞ is a normalization constant. Therefore, combination
of Eqs. (1) and (2) produces the following equation:

PðujjD,IÞp

Z
PðDjU,IÞPðUjIÞ. . . dui . . .|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ia j

: ð3Þ

This equation presents needs to define PðDjU,IÞ and PðUjIÞ which
are called the likelihood and prior, respectively. The likelihood, or
in this case more appropriate the PDF of the data (D) conditional
on the pixels (U), is constructed by making the standard
assumptions of noise. It is assumed that this noise has a zero
mean value and a specific standard deviation. As a result, it is
important to define the prior on the base of the available prior
information.

3. The prior

There are some logical dependence among neighboring pixels
and this expectation is translated in the following model, f, for an
arbitrary pixel ui. In this model, the value of ui is estimated by its
two neighbor points. Fig. 2 clarifies this concept where two
neighbor points of pixel i are shown, and their positions are
shown by x. Given an arbitrary location in [xi�1, xi +1], it is logical
to assume that a closer neighbor has more influence on the
estimate than the other neighbor.

Therefore, dr,i and dl,i are two relative weights which,
respectively, present the influence of left and right neighbor
points on the target pixel, and one gets dl,iþdr,i ¼ 1. As a result,
the value of the pixel ui is estimated as

ûi ¼ f ðui�1,uiþ1Þ ¼ ui�1 � dr,iþuiþ1 � dl,i, ð4Þ

where dr,i and dl,i are the absolute distance from the right and left
points, respectively. Therefore, one obtains

dl,i ¼
xi�xi�1

xiþ1�xi�1
and dr,i ¼

xiþ1�xi

xiþ1�xi�1
: ð5Þ

The same concept holds to higher dimensions. Having two vectors
xi�1 and xi + 1 that are produced from three successive points
ordered according to a certain axis, j, we will have

dðjÞl,i ¼
jxi�1j

jxi�1jþjxiþ1j
and dðjÞr,i ¼

jxiþ1j

jxi�1jþjxiþ1j
, ð6Þ

where jxj is the length of vector x calculated as

jxj ¼ ðx � xÞ1=2:

For instance, a two-dimensional problem is shown in Fig. 3. This
figure presents three arbitrary pixels in which data points are
assigned to two of them. In this case, the relative weights that
present the influence of left and right neighbors are shown for the
x axis as

dðxÞl,i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xi�1Þ

2
þðyi�yi�1Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xi�1Þ

2
þðyi�yi�1Þ

2
q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1�xiÞ

2
þðyiþ1�yiÞ

2
q , ð7Þ

dðxÞr,i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1�xiÞ

2
þðyiþ1�yiÞ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xi�1Þ

2
þðyi�yi�1Þ

2
q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1�xiÞ

2
þðyiþ1�yiÞ

2
q , ð8Þ

and the same equations hold for the y axis. Having the model
defined, the error ei also is implicitly defined by

ei ¼ ui�ûi ¼ ui�f ðui�1,uiþ1Þ ¼ ui�ðui�1 � dr,iþuiþ1 � dl,iÞ: ð9Þ

The only thing we know about this error is that the error has a mean
of zero (the error is either positive or negative) with some unknown
local variance f2

i . It means that we assume that the standard
deviation of error is relevant to the distance of neighbors,
fipðxiþ1�xi�1Þ. As a matter of fact, a closer neighbor points to the
pixel a smaller error for the estimation is expected. Using the
principle of Maximum Entropy [3], we find the well known Gaussian
probability density function of ei presented in Eq. (10). fi in this
equation stands for the standard deviation of the pixel ui:

PðeijfiÞ ¼
1ffiffiffiffiffiffi

2p
p

fi

exp �
1

2f2
i

e2
i

" #
: ð10Þ

Substituting Eq. (9) into Eq. (10) and making the appropriate change
of variable from ei to ui, the PDF of pixel ui can be obtained by

Pðuijui�1,uiþ1,fi,IÞ ¼
1ffiffiffiffiffiffi

2p
p

fi

exp �
1

2f2
i

½ui�ui�1 � dr,i�uiþ1 � dl,i�
2

" #
:

ð11Þ

u0

d1

u1 u2 ··· uj uv−1

d2

uv uv+1

d3

···

Fig. 1. A one-dimensional illustration of the pixels which data points are assigned to.
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Fig. 2. One-dimensional illustration of the pixels which data points are assigned to.
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