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This paper presents a robust backstepping approach for a flexible air-breathing hypersonic vehicle in the 
longitudinal plane. The control design and stability analysis of the backstepping approach are based on a 
control-oriented model, which treats the flexible dynamics as dynamic perturbations. The backstepping 
method in this study utilizes a command filter to avoid the problem of “explosion of complexity” 
that occurs in the traditional backstepping method. To suppress the flexible dynamics and parameter 
uncertainties, a nonlinear disturbance observer is proposed to estimate these uncertainties during the 
tracking process. By introducing a group of virtual states, a Lyapunov-based stability analysis of the 
closed-loop system indicates that the tracking errors vanish asymptotically. A guideline for tuning the 
controller is given from a physical perspective to avoid exciting the flexible modes. This approach presents 
a good tracking performance with respect to both the flexible modes and parameter uncertainties. 
Simulation results of the full nonlinear model show the effectiveness of the proposed approach.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Air-breathing hypersonic vehicles (AHVs), which represent a 
cost-efficient and reliable way for access to space, have attracted 
much interest since the successful flight test of the X-43A air-
craft in 2004. Differently from some conventional flight vehicles, 
the propulsion-airframe integration results in heavy coupling be-
tween propulsive and aerodynamic forces. Moreover, the strong 
coupling between rigid and flexible dynamics causes significant 
uncertainties, due to the slender geometries and light structures 
[1]. Consequently, the control design of AHVs is an important seg-
ment during the research process.

In the past few years, many effective models have been pro-
posed for AHVs. The model developed by NASA Langley Research 
Center was presented in Wang and Stengel [2], and Xu et al. 
[3]. Chavez and Schmidt [4] utilized Newtonian theory to estab-
lish a two-dimensional analytical hypersonic aerodynamic model. 
Recently, Bolender and Doman [5] proposed a new model that 
applied oblique shock and Prandtl–Meyer expansion theory to de-
termine the pressure distribution over the vehicle. In their work, 
Lagrange’s Equations were used to derive the equations of mo-
tion for a flexible AHV (FAHV). Furthermore, piston theory [6,7]
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has been applied to improve the modeling of generic hypersonic 
vehicles, leading to a more accurate and complex model.

Generally speaking, the methods applied to AHVs are divided 
into two parts: linear methods and nonlinear methods. Justin et 
al. [8] investigated a H∞ output feedback approach that achieved 
desirable properties. A linear parameter-varying control approach 
with gain scheduling was used to represent the structural dynam-
ics of a FAHV in Lind [9]. The linear output feedback control pro-
posed by Sigthorsson et al. [10] and the LQR control addressed by 
Kevin et al. [11] were shown to be effective to design controllers 
for a FAHV. Usually, the linear controllers are designed with gain 
scheduling to guarantee a desirable performance. However, exten-
sive flight testing and offline analysis are required in this process. 
Advanced nonlinear control methods are presented to overcome 
the drawbacks remaining in linear methods and have received 
more attention these days. The feedback linearization method has 
been widely used in AHVs for its simplicity [2,12,13]. With the 
technique of the feedback linearization, a nonlinear system can 
be transformed into an equivalent linear system. Afterwards, the 
LQR control is applied to guarantee the stability of the closed-
loop system. But this technique requires an accurate model be-
cause it’s sensitive to uncertainties. Based on approximate feedback 
linearization, the elevator-to-lift coupling is ignored strategically, 
resulting in a significant mismatch between the control-oriented 
model and the full nonlinear model. To deal with the mismatch, 
Parker et al. [13] added an additional canard to cancel the lift from 
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the elevator, rendering the system minimum phase. The backstep-
ping method [14] is also an effective way to deal with nonlinear 
problems. But the traditional backstepping method suffers from 
the problem of “explosion of complexity”, which can be eliminated 
by dynamic surface control and differentiator [15–18]. To deal with 
the flexible effects and parameter uncertainties, passive suppres-
sion ways and active suppression ways are pursued for AHVs. The 
H∞ method [8,19] and integral augmented method [12,13,15] are 
passive suppression ways, while the adaptive control [14,18,20], 
the disturbance observer based control [12,19], and the neural net-
work based control [16,17] are active suppression ways.

Motivated by previous works, the backstepping method is 
adopted in this study to relax the accuracy requirements of the 
flight dynamics model. In the backstepping control, a command fil-
ter is proposed to create virtual signals and their first derivatives, 
while providing magnitude, bandwidth and rate limit constraints 
[21,22]. The command filter is utilized to deal with the problem 
of “explosion of complexity”. To enhance the robustness of the 
controller with respect to the flexible modes and parameter uncer-
tainties, a nonlinear disturbance observer (NDO) [23] is proposed 
to estimate these uncertainties. The command filter also acts as 
a low-pass filter to the estimates. We found that the NDO is a 
bounded-input and bounded-output (BIBO) system with proper 
selection of the control functions. Therefore, the bandwidths of 
the NDO are obtained for parameters design to avoid exciting the 
flexible modes. At the end, a comparison among the NDO based 
backstepping control, an extended state observer (ESO) [24,25]
based backstepping control, and the NDO based nonlinear dynamic 
inversion (NDI) is performed.

The primary contributions of this paper lie in that: (a) the 
bandwidths of the NDO are obtained for parameters design; (b) 
a guideline is proposed for tuning the controller to avoid exciting 
the flexible modes based on the analysis of the first order vibra-
tion frequency and the bandwidths of the actuators and command 
filters; (c) a group of new virtual states are introduced to ana-
lyze the stability of the controller in the sense of Lyapunov. The 
remainder of this paper is organized as follows: In Sec. 2, a non-
linear model for the FAHV is proposed and a strict feedback form 
for the backstepping control design is obtained. The control de-
sign of the NDO and backstepping method is presented in Sec. 3. 
Section 4 discusses the Lyapunov stability of the rigid-body states. 
A guideline for tuning the controller is given in Sec. 5. Finally, sim-
ulation results and conclusions are presented in Sec. 6 and Sec. 7, 
respectively.

2. Model description

The model adopted in this study is on the basis of Bolender and 
Doman [5], and Trevor et al. [26]. For simplicity, only longitudinal 
dynamics are considered. The fuselage is modeled as a free-beam 
instead of a couple of cantilever beams. In the free-beam model, 
the coupling between rigid and flexible dynamics is through the 
aerodynamic forces. Assuming that the Earth is flat and the vehicle 
is normalized to unit depth. The general longitudinal dynamics of 
a FAHV are [20]

V̇ = (T cosα − D)/m − g sinγ (1)

ḣ = V sinγ (2)

γ̇ = (L + T sinα)/(mV ) − g cosγ /V (3)

α̇ = Q − γ̇ (4)

Q̇ = M/I yy (5)

η̈i = −2ζiωi η̇i − ω2
i ηi + Ni, i = 1,2,3 (6)

Table 1
Vehicle mass and modal frequencies at different fuel levels [10].

Fuel level 0% 30% 50% 70% 100%

m, slug/ft 93.57 126.1 147.9 169.6 202.2
ω1, rad/s 22.78 21.71 21.17 20.73 20.17
ω2, rad/s 68.94 57.77 53.92 51.24 48.4
ω3, rad/s 140 117.8 109.1 102.7 95.6

Five rigid-body states are included in this model x = [V , h, γ ,

α, Q ]T , which represent velocity, altitude, flight path angle (FPA), 
angle of attack (AOA), and pitch rate, respectively. Six flexible 
states η = [η1, η̇1, η2, η̇2, η3, η̇3]T are derived from the first three 
bending modes of the free-beam model. The damping ratio of all 
flexible modes is ζi = 0.02. To suppress the non-minimum phase 
behavior, a canard is added in conjunction with the elevator by 
choosing δc = kecδe , kec = −Cδe

L /Cδc
L strategically, where δe is the 

elevator deflection, δc represents the canard deflection, and kec is 
defined as the interconnection gain between the elevator deflec-
tion and the canard deflection. The interconnection gain means 
that when the elevator deflects trailing edge up, the canard de-
flects trailing edge down at the same time so that the lift due 
to the elevator is canceled. Therefore, the non-minimum phase 
behavior of the rigid dynamics is alleviated. The control inputs be-
come u = [φ, δe]T , where φ is the equivalent fuel-to-air ratio. The 
outputs are selected as y = [V , h]T . The 50% fuel level is defined 
as the nominal operating condition. The vehicle mass and modal 
frequencies at different fuel levels are given in Table 1.

For control design, lift L, drag D , thrust T , pitching moment M , 
and generalized forces Ni are presented by curve fitted approxima-
tions.

T ≈ q̄S
[
CT ,φ(α)φ + CT (α) + Cη

T η
]

L ≈ q̄SCL(α, δ,η)

D ≈ q̄SC D(α, δ,η)

M ≈ zT T + q̄Sc̄CM(α, δ,η)

Ni ≈ q̄S
[
Nα2

i α2 + Nα
i α + Nδe

i δe + Nδc
i δc + N0

i + Nη
i η

]
,

i = 1,2,3

(7)

where q, S , c, and zT are dynamic pressure, reference area, mean 
aerodynamic chord, and thrust moment arm, respectively. The de-
tailed expressions of aerodynamic coefficients are given by

δ = [δc, δe]T

CT ,φ(α) = Cφα3

T α3 + Cφα2

T α2 + Cφα
T α + Cφ

T

CT (α) = C3
T α3 + C2

T α2 + C1
T α + C0

T

CM(α, δ,η) = CM(α, δ) + Cη
Mη

= Cα2

M α2 + Cα
Mα + C δe

Mδe + C δc
Mδc + C0

M + Cη
Mη

CL(α, δ,η) = CL(α, δ) + Cη
L η

= Cα
L α + C δe

L δe + C δc
L δc + C0

L + Cη
L η

C D(α, δ,η) = C D(α, δ) + Cη
Dη

= Cα2

D α2 + Cα
Dα + C

δ2
e

D δ2
e + C δe

D δe + C
δ2

c
D δ2

c

+ C δc
D δc + C0

D + Cη
Dη

Cη
j = [

Cη1
j 0 Cη2

j 0 Cη3
j 0

]
, j = T , M, L, D

Nη
i = [

Nη1
i 0 Nη2

i 0 Nη3
i 0

]
, i = 1,2,3

(8)

The dynamic pressure is expressed as q = 0.5ρV 2, while the air 
density is given by ρ = ρ0 exp[−(h − h0)/hs]. We refer the in-
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