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This paper proposes a neural network approximation-based nonsingular terminal sliding mode control 
(NN-NTSMC) approach to address the problem of trajectory tracking for robotic airships. First, dynamics 
model of an airship and control problem of trajectory tracking are formulated. Second, a nonsingular 
terminal sliding mode controller (NTSMC) combined with neural network (NN) approximation is designed 
to track the commanded trajectory. Finally, the effectiveness and robustness of the designed controller 
are illustrated through simulation results. Simulation results indicate that NN-NTSMC reduces chattering 
effectively and ensures faster convergence and better tacking precision against linear hyperplane-based 
sliding mode control (LSMC).

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

As a typical lighter-than-air vehicle, the robotic airship per-
forms obvious advantages in more payload capacity, less energy 
consumption and longer time operation, comparing with un-
manned aerial vehicles. It has received significant attention in 
the past few years because of its various applications, which re-
quire high-precise trajectory tracking. However, inherent dynamics 
nonlinearity makes robotic airships be a class of high coupled non-
linear MIMO systems. Moreover, a major difficulty in the control of 
robotic airships is well known for parameter variations and exter-
nal disturbances, which hinders perfect tracking of a commanded 
trajectory.

In order to cope with the problem, there are many methodolo-
gies proposed in the literature, such as PID [1,2], state feedback 
[3], back-stepping control [4] and adaptive control [5]. The sliding 
mode control (SMC) represents an attractive alternative for aircraft 
control [6–8], due to its robustness to parametric uncertainties and 
external disturbances. It was the control approach employed in ref-
erences [9–11] to design controller for airships. However, it has 
two obvious disadvantages: one is that the zero convergence of er-
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ror dynamics is usually asymptotic; and the other is the chattering 
phenomenon in the control effort due to the use of a high-speed 
switching control law [12–14]. To overcome these drawbacks, ter-
minal sliding mode control (TSMC) with intelligent control was 
recently proposed [15,16]. The NN was used to approximate the 
uncertain parameters or unknown model of the plant in these ref-
erences.

Motivated by the published works, this paper proposes a NN-
NTSMC approach, which combines both the merits of the NTSMC 
and NN, for trajectory tracking of robotic airships. A NTSMC ap-
proach is presented to ensure faster convergence, better track-
ing precision and, meanwhile, to weaken chattering phenomenon. 
Compared with LSMC, TSMC with a nonlinear terminal sliding sur-
face offers some superior properties such as fast, finite time con-
vergence [17]. However, dynamics of robotic airships are highly 
nonlinear and complicated, and the lumped uncertainty of the sys-
tem, which includes unknown dynamics, parameter variations and 
external disturbances, are very difficult to obtain in practical ap-
plications. To cope with this problem, the radical basic function 
neural network (RBFNN) was employed to approximate the lump 
uncertainties of the robotic airship, due to its capability of univer-
sally approximating any unknown continuous function to arbitrary 
precision [15]. In addition, an adaptive law is designed to update 
the NN weight in the processing of approximation. Therefore, the 
proposed control approach, not only takes advantage of robustness 
of SMC, but also brings into full play NN’s precise approximation 
to dynamics uncertainty of the robotic airship.
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The rest of this paper is organized as follows. In section 2, the 
dynamics model of the robotic airship and the problem of trajec-
tory tracking are formulated. Section 3 designs the NN-NTSMC to 
address the problem of trajectory tracking. In section 4, simula-
tion studies illustrate the performance of the proposed controller. 
Finally, conclusions are given in Section 5.

2. Modeling and formulation

A robotic airship consisting of an axis-symmetric, teardrop-
shaped hull, propellers, tail fins, gondola and payload and equipped 
with actuators of 6-DOF [4,18] is investigated in this paper. Ac-
cording to references [19,20], the motion equations of an airship 
are expressed as follows:

η̇ = J (η)V =
[

J 1 03×3

03×3 J 2

]
V (1)

Mη(η)η̈ + Nη(η, η̇)η̇ + Gη(η) = τ (2)

Considering the unknown dynamics, parameter variations and 
external disturbances of the robotic airship, the dynamic model (2)
can be rewritten as follows:

(Mη + �Mη)η̈ + (Nη + �Nη)η̇ + (Gη + �Gη) = τ + τ d (3)

where �Mη, �Nη and �Gη denote the uncertainties of Mη, Nη

and Gη , respectively, and τ d denotes the external disturbance.
It is assumed that system (3) satisfies the following assump-

tions.

Assumption 1. Introduce � f to represent a lumped term and de-
fine it as

� f = −(�Mηη̈ + �Nηη̇ + �Gη − τ d) (4)

There exists a finite positive constant γ such that the following 
inequalities hold for all η in the domain of interest

‖� f ‖ ≤ γ (5)

Substituting (4) into (3) yields

Mηη̈ + Nηη̇ + Gη = τ + � f (6)

The problem of trajectory tracking is the design of a con-
troller that stabilizes the tracking error dynamics in the pres-
ence of model uncertainties, parameter variations and exter-
nal disturbances [11]. The commanded time-varying trajectory, 
expressed by generalized coordinates, is assumed to be ηc =
[xc, yc, zc, θc, ψc, φc]T , and the true state of the airship is η =
[xE , yE , zE , θ, ψ, φ]T . Design a proper controller so that the robotic 
airship converges to and track the commanded trajectory, i.e. 
limt0→t f |η − ηc | = 0.

3. Trajectory tracking control design

3.1. NTSMC

Define the tracking error

e = η − ηc (7)

A nonsingular terminal sliding manifold is chosen as follows 
[14]

s(t) = e(t) + λė(t)p/q (8)

where λ = diag(λ1, λ2, λ3, λ4, λ5, λ6) is a constant matrix, λi > 0, 
i = 1, 2, 3, 4, 5, 6, p and q are positive odd integers satisfying 1 <
p/q < 2.

The NTSMC is designed as follows:

τ = Mηη̈c + Nηη̇ + Gη − q

p
Mηλ−1 diag

(
ė2−p/q)

−
[
sT λ diag

(
ėp/q−1)M−1

η

]T

∥∥sT λdiag
(
ėp/q−1)M−1

η

∥∥2

· γ ‖s‖∥∥λ diag
(
ėp/q−1)M−1

η

∥∥ (9)

Theorem 1. For the system (3), if the terminal sliding manifold is chosen 
as (8), and the controller is designed as (9), then it guarantees the stabil-
ity of the closed-loop system and the tracking error will converge to zero 
in a finite time.

Proof. Select the following Lyapunov function candidate:

V = 1

2
sT s (10)

Differentiating (10) with respect to time and using (8), it is ob-
tained that

V̇ = sT ṡ = sT
[

ė + p

q
λ diag

(
ėp/q−1)ë

]
(11)

Differentiating (7) with respect to time twice and using (3) and 
(4), it is obtained that

ë = η̈ − η̈c = M−1
η (τ + � f − Nηη̇ − Gη)

= M−1
η

[
− q

p
Mηλ−1 diag

(
ė2−p/q) + � f

]

+ M−1
η

[
− [sT λ diag(ėp/q−1)M−1

η ]T

‖sT λdiag(ėp/q−1)M−1
η ‖2

· γ ‖s‖‖λ diag
(
ėp/q−1)M−1

η ‖
]

(12)

Substituting (12) into (21) yields

V̇ = − p

q
γ ‖s‖∥∥λ diag

(
ėp/q−1)M−1

η

∥∥
+ p

q
sT λ diag

(
ėp/q−1)M−1

η � f

≤ − p

q
γ ‖s‖∥∥λ diag

(
ėp/q−1)M−1

η

∥∥
+ p

q
‖s‖∥∥λ diag

(
ėp/q−1)M−1

η

∥∥‖� f ‖

= p

q
‖s‖∥∥λ diag

(
ėp/q−1)M−1

η

∥∥(‖� f ‖ − γ
)

(13)

The inequation ‖� f ‖ −γ < 0 exists according to Assumption 1, 
and then it is obtained that

V̇ ≤ p

q
‖s‖∥∥λdiag

(
ėp/q−1)M−1

η

∥∥(‖� f ‖ − γ
)
< 0,(

s(t) �= 0
)

(14)

According to eq. (13), it is known that if s = 0 then V̇ = 0. The 
following equation is derived

lim
t→t f

s = lim
t→t f

[
e + λėp/q] = lim

t→t f

[
(η − ηc) + λ(η̇ − η̇c)

p/q] = 0

(15)

where t f = tr + ts , tr is the time when s(t) reaches zero, and ts is 
the finite time which can be expressed as

ts = −λ
q/p
i

0∫
ei(tr)

de

e−q/p
i (t)

= pλ
q/p
i

p − q

[
ei(tr)

]1−q/p
(16)



Download	English	Version:

https://daneshyari.com/en/article/8058576

Download	Persian	Version:

https://daneshyari.com/article/8058576

Daneshyari.com

https://daneshyari.com/en/article/8058576
https://daneshyari.com/article/8058576
https://daneshyari.com/

