Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

Parametric reduced order model approach for rapid dynamic loads prediction

^a Aerospace Centre of Competence, Siemens PLM Software (Belgium), Interleuvenlaan 68, 3001 Leuven, Belgium

^b Department of Aerospace Engineering, Faculty of Engineering, University of Bristol, Queen's Building, University Walk, BS8 1TR Bristol, United Kingdom

ARTICLE INFO

Article history: Received 23 March 2015 Received in revised form 11 February 2016 Accepted 14 February 2016 Available online 20 February 2016

Keywords: Gust loads State-space aeroelasticity Reduced Order Model Flexible aircraft Correlated loads

1. Introduction

Loads calculations play an important part across much of the design and development of an aircraft, and have an impact upon structural design, aerodynamic characteristics, weight, flight control system design and performance. They determine the most extreme stress levels, fatigue damage and damage tolerance. The certification of large commercial aircraft is covered by the EASA CS-25 documents [1] which define a range of load cases that has to be accounted for, and are a primary prerequisite for assuring structural integrity over the operating environment of the aircraft. Loads requirements are defined in the context of the flight envelope. The regulations require that enough points on, or within, the boundary of the flight envelope are investigated to ensure that the most extreme loads for each part of the aircraft structure are identified.

The flight conditions which provide the largest aircraft loads are not known a-priori. Therefore the aerodynamic and inertial forces have to be calculated at a large number of conditions to give an estimate of the maximum loads, and hence stresses, that the aircraft will experience in service. It is of great interest for aircraft design to identify which are the critical loading events and at what design configuration and flight conditions they occur. A typical air-

* Corresponding author at: Department of Aerospace Engineering, Faculty of Engineering, University of Bristol, Queen's Building, University Walk, BS8 1TR Bristol, United Kingdom.

E-mail address: michele.castellani@bristol.ac.uk (M. Castellani).

http://dx.doi.org/10.1016/j.ast.2016.02.015 1270-9638/© 2016 Elsevier Masson SAS. All rights reserved.

ABSTRACT

A parametric reduced order methodology for loads estimation is described that produces a fast and accurate prediction of gust and manoeuvre loads for different flight conditions and structural parameter variations. The approach enables efficient prediction of the peak loads whilst maintaining the correlated time histories for different loads. It is then possible to determine correlated loads plots with reduced computation without losing accuracy. The effectiveness of the methodology is demonstrated by considering loads arising from families of gusts and pitching manoeuvres acting upon a numerical transport aircraft aeroservoelastic model with varying flight conditions and structural properties.

© 2016 Elsevier Masson SAS. All rights reserved.

craft loads design process involves monitoring many of so-called Interesting Quantities (IQs) (e.g. bending moments, torques, accelerations, etc.) for a wide range of different load cases that the aircraft is likely to experience in-flight and on the ground. Each "loads loop" simulates the response of a numerical aeroelastic aircraft model to these loads and determines the critical cases, and these results are fed into the structural design. Such a process is extremely time consuming and furthermore, has to be repeated every time that there is an update in the aircraft structure.

It is usual to determine the extreme loads cases for 1D (single IQs) and 2D (correlated IQs) events. In the latter case, pairs of IQ response time histories (e.g. bending moment and torque at a single position on the aircraft) are visualized against each other for a range of different load cases. The extreme vertices of the envelope encompassing these correlated time histories characterize the critical load cases that are then used to perform stress calculations.

There is interest in developing methodologies that are able to determine the worst case gust loads without excessive computation; however, approaches such as Matched Filter Theory [2], Statistical Discrete Gust [3] and Evolutionary Algorithm [4] methods all determine arbitrary gust time histories that give the worst 1D response. The time domain approaches defined in the airworthiness regulations [1,5] are based upon finding the tuned "1-Cosine" gust that causes the worst response. Previous work in the FFAST EU FP7 project [6–8] investigated the use of several surrogate models and optimization methods for fast and efficient prediction of the worst case gust loads for each IQ of a large transport aircraft

Nomenclature

Nomenciature		
A, B, C A _r , B _r ,	, D State-space system matrices of Full Order Model C_r , D_r State-space system matrices of Reduced Order Model	Q hg Q hc
A.	Matrix coefficients of Rational Function Approximation	c
<i>1</i> a	of aerodynamics	5 T
A ~	Matrix coefficients of Rational Function Approximation	I T
ng	of gust aerodynamics	IB
Ba	Matrix coefficients of Rational Function Approximation	V
Pu	of aerodynamics	V
Ba	Matrix coefficients of Rational Function Approximation	VV
-g	of gust aerodynamics	V_A/M_A
Ca	Matrix coefficients of Rational Function Approximation	V_C/M_C
- u	of aerodynamics	V_D/M_D
Co	Matrix coefficients of Rational Function Approximation	u
8	of gust aerodynamics	u _c
Chh	Generalized damping matrix	w _{ij}
D_0, D_1	\mathbf{D}_{2} Matrix coefficients of Rational Function Approxima-	
•	tion of aerodynamics	Wg
D_{0g}, D	$\mathbf{D}_{2\sigma}$, $\mathbf{D}_{2\sigma}$ Matrix coefficients of Rational Function Approx-	x
	imation of gust aerodynamics	x _r
D _{0c} , D ₁	D _{1c} , D _{2c} Matrix coefficients of Rational Function Approxi-	xg
	mation of control surface aerodynamics	xa
${\cal F}$	Functional of the extended Rational Function Approxi-	xg
	mation	у
G_h	Open-loop actuator transfer function	β_l
h	Altitude	
H _c	Closed-loop actuator transfer function	δ
i	Imaginary unit	ε_{ij}
Ι	Identity matrix	5
k	Reduced frequency	
k _c	Gain of closed-loop actuator transfer function	ΔM
k_h	Hydraulic gain	
K	Stiffness matrix in physical coordinates	ΔK
K _{hh}	Generalized stiffness matrix	
la	Aerodynamic reference length	Φ
М	Mach number	Φρρ
М	Mass matrix in physical coordinates	- KD (h
M _{hh}	Generalized mass matrix	511 (1)h
na	Number of aerodynamic poles	ω _Π
n _d	Number of parameters of the model	Abbrevia
n _h	Number of generalized coordinates	DLM
n_k	Number of reduced frequencies	DOF
n_p	Number of sampling points	FOM
n_r	Order of Reduced Order Model	GAF
n _z	Vertical load factor	10
Ν	Order of Full Order Model	
р	Complex reduced frequency	ITI
р	Vector of parameters of the model	MAC
q_{∞}	Dynamic pressure	MTOW/
q_h	Generalized coordinates	DRUM
Q _{AA}	Aerouynamic forces matrix on structural degrees of	REA
•	Treedoin due to structural displacements	DMCE
Q _{Ag}	Aerouynamic forces matrix on structural degrees of	DOD
0	Generalized percentric forces matrix due to st	
Q _{hh}	Generalized aerodynamic forces matrix due to struc-	KUM
	tural displacements	200

Q hg Q hc	Generalized aerodynamic forces matrix due to gust Generalized aerodynamic forces matrix due to control	
	surfaces	
S T	Laplace variable	
I T	Generalized Dasis matrix for structural modifications	
	Balanced truncation dasis matrix	
V	Allspeed Left reduced order basis matrix	
V 147	Right reduced order basis matrix	
VV./M.	on manneuvering speed/Mach number	
V_A/W_A	esign cruise speed/Mach number	
$V_{\rm D}/M_{\rm D}$	esign diving speed/Mach number	
• D/ IVI D 11	tate-space model input vector	
u 11 -	Pilot command input	
W::	Weighting factor of the optimization process for the	
w IJ	extended Rational Function Approximation	
Wg	Gust velocity	
x	State-space states vector of Full Order Model	
x _r	State-space states vector of Reduced Order Model	
xg	Gust aerodynamics states vector	
xa	Aerodynamic states vector	
x _g	Gust aerodynamics states vector	
y	tate-space model output vector	
βι	tion	
δ	Control surface deflection	
ε_{ij}	Normalized squared error between tabulated and ap-	
5	proximated $i-j$ terms of generalized aerodynamic matrix	
ΔΜ	Additional mass matrix containing structural modifica- tions	
ΔK	Additional stiffness matrix containing structural modi-	
	fications	
Φ	Matrix of eigenvectors	
Φ_{RB}	Matrix of rigid body modes	
ζh	Hydraulic damping	
ω_h	Hydraulic natural frequency	
Abbreviat	ions	
DLM	Doublet Lattice Method	
DOF	Degree Of Freedom	
FOM	Full Order Model	
GAF	Generalized Aerodynamic Forces	
IQ	Interesting Quantity	
LC	Load Case	
LTI	Linear Time Invariant	
MAC	Modal Assurance Criterion	
MTOW	Maximum Take-Off Weight	
PROM	Parametric Reduced Order Model	
KFA	Rational Function Approximation	
RMSE	Root Mean Square Error	
KOB	Reduced Order Basis	
KOM	Reduced Order Model	
SVD	Singular Value Decomposition	

Download English Version:

https://daneshyari.com/en/article/8058620

Download Persian Version:

https://daneshyari.com/article/8058620

Daneshyari.com