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The estimation of launch vehicle fall back safety zone is a crucial problem in space application since the
consequence of a mistake may be dramatic for the population. It consists in estimating the probability
that the distance between the launcher stage fall-back position calculated, with a trajectory simulation
code, and the predicted one is lower than a given threshold. This probability of having a distance that
exceeds the critical limit is of course low and may hardly be estimated with crude Monte Carlo methods.
One proposes in this paper adaptive importance sampling algorithms when some parameters of input
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1. Introduction

During the launch of a satellite, the most important event is
of course the lift-off. Nevertheless, a successful launch is not the
end of the launcher task. Once their mission is completed, the
launch vehicle stages are jettisoned and fall back to land or in the
ocean. The estimation of launch vehicle fallout safety zone is a cru-
cial problem in aerospace because it potentially involves dramatic
repercussions on the population and the environment. For that
purpose, an efficient estimation of the probability that a launch
vehicle stage falls at a distance greater than a given safety limit
is strategic for the qualification of such vehicles. The fact that a
launcher stage touches the ground far from its intended point is a
rare event and its probability is consequently difficult to estimate
with crude Monte Carlo simulations.

Rare event probability estimation is a growing part of complex
system simulation for safety and risk analysis. Numerous statis-
tical and simulation techniques have been proposed to estimate
such probabilities. Indeed, importance sampling [1-3], subset sim-
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ulation [4,5], first and second order reliability methods [6,7], or
extreme value theory [8,9] are notably well known algorithms
to estimate rare event probabilities on input-output “black-box”
functions such as aerospace simulation codes. Their principles and
advantages/drawbacks have also been deeply studied [10]. In this
article, we will focus more precisely on importance sampling tech-
niques, with parametric or non-parametric optimization.

In order to perform the rare event probability estimation, sev-
eral parameters ® of the simulation are set, such as the different
parameters of input parametric density, and influence the proba-
bility estimate. A general approach consists in estimating the rare
event probability associated to each combination of these different
parameters with a complete importance sampling procedure. Nev-
ertheless, this method can be computationally cumbersome when
the simulation of the complex system is time consuming. To solve
this problem, we propose to use the samples obtained to estimate
the rare event probability when the input distribution parameters
are fixed to a reference value ® = as an initialization of the im-
portance sampling procedure adapted to a new value of density
parameter © = 6'.

This paper is organized as follows. We first briefly review the
principles of parametric and non-parametric importance sampling
algorithms. Then, we describe the proposed adaptive sampling ap-
proaches to handle uncertain input distribution parameters. The
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final section is dedicated to the application of the proposed algo-
rithms on different analytical and aerospace test cases in order to
assess their efficiency with respect to classical methods.

2. Quick review on adaptive importance sampling techniques

In this first section, we briefly review some basics on rare event
estimation and more precisely on importance sampling. For the
sake of conciseness, the complete details of the following tech-
niques are not given in this article. The reader can refer to [10]
for more information.

2.1. Context

Let us define a d-dimensional continuous random vector X with
a probability density function (pdf) ho(-). In this article, we focus
on the estimation of the probability that P(¢(X) > S) with ¢(-),
a continuous input-output scalar function ¢(-) : RY - R and S a
threshold. The launch vehicle stage fall-back use case may be mod-
eled as an input-output function ¢ (-) with as inputs several launch
vehicle characteristics and environmental conditions, and as output
the distance between the estimated and the predicted fall-back po-
sitions. In this article, ¢ (-) is a complex simulation code developed
at ONERA [11].

We assume here that Y = ¢(X) is a random variable. Crude
Monte-Carlo simulations [12] are a simple approach to estimate
the probability P (¢ (X) > S) but they are in fact not well suited to
rare event probability estimation. Different alternatives to Monte-
Carlo can be considered, such as importance sampling [1-3], im-
portance splitting [4,5] or extreme value theory [8,9]. Only impor-
tance sampling techniques are analyzed in this article.

2.2. Adaptive importance sampling

2.2.1. Principle of importance sampling

The objective of importance sampling (IS) is to reduce the vari-
ance of the Monte-Carlo probability estimator without increasing
the number of required simulations N. The main idea is to gen-
erate the multidimensional samples Xi, ..., Xy with an auxiliary
density h(-), which is able to generate more samples such that
¢ (X) > S than hg(-), and then to introduce a weight in the prob-
ability estimate [10]. The IS probability estimate P is then given

by

- ho(X;
Pt = Z $(Xi)>$ ho((x )) (1)

where 14x,)~s is equal to 1 if ¢(X;) > S and 0 otherwise. The
optimal auxiliary density hop¢(-) (i.e. minimizing the estimator vari-
ance) is given in [13]

14()>sho(")
0=, 2)

Since the optimal auxiliary density hop(-) depends unfortunately
on the probability of interest P, it cannot be determined in ad-
vance. Two main algorithms have been proposed to determine an
efficient sampling pdf.

hopt(‘) =

2.2.2. Cross-entropy optimization of importance sampling auxiliary
density

Let us define h; (-), a family of densities indexed by a parameter
A € A where A is the multidimensional space of pdf parameters.
The parameter A is, for instance, the mean and the covariance ma-
trix in the case of Gaussian densities. The objective of importance
sampling with cross-entropy (CE) is to determine the parameter
Aopt that minimizes the Kullback-Leibler divergence between h; (-)

and hop(-). This process is adaptive since the direct determination
of Agpe is difficult. In fact, one proceeds iteratively to estimate Aqpt
with an iterative sequence of thresholds,
o<qi<Qa<--<Q<--<S§

chosen adaptively using quantile definition. The complete details
of this algorithm can be found in [14,15]. The cross-entropy opti-
mization algorithm for importance sampling density is given by

(i) k=1, define hy,(-) =ho(-) and set p € (0, 1)

(ii) Generate the population X(k), ey X,(\l,‘) according to the pdf
hy,_,(-) and apply the function ¢(-) in order to have Y; =
dX), L YN = (XY)

(iii) Compute the empirical p-quantile g, =Y |,nj, where [a] de-
notes the largest integer that is smaller than or equal to a

(iv) Optimize the parameters of the auxiliary pdf family as

N (k)
1 h()(x ) (k)
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(v) If qx < S, k< k+1, go to step (ii), else
(vi) Estimate the probability

Zlqs(x( ))>s

2.2.3. Non-parametric adaptive importance sampling

The objective of non-parametric adaptive importance sampling
(NAIS) technique is to approximate the IS optimal auxiliary density
given in equation (2) with kernel based probability distributions.
The complete details of this algorithm can be found in [2,16]. Using
Gaussian kernel densities, the NAIS algorithm is given by

ho(X™®)

BCE
P=(¢(X) > S) = o)

(i) k=1 and set p € (0,1)
(ii) Generate the population X(k),...,X;l;) according to the pdf
hr_1(-), apply the function ¢(-) in order to have Y{k) =

I k I
X, ... Y =Xy
(iii) Compute the emplrlcal p-quantile g, = Y[’;)NJ
k N )
ho(X;")
(IV) Estimate Ik =IN ZZ ¢(X(]))>qkm
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(v) Update the Gaussian kernel sampling pdf with

_ 1 ( ()
hi(X) = kNIkdet(Bk)g;wj(xn)l{d( (X Xj))

where K, is the standard d-dimensional Gaussian function
with zero mean and a diagonal covariance matrix By =
) )

diag(b} bd) and wj (Xi(”) =1 0204 th(Xfo))) The co-
efficients of matrix Bj are optimized according to the AMISE
(Asymptotic Mean Integrated Square Error) criterion [17,18].

(vi) If g < S, k < k+1, go to step (ii), else

(vii) Estimate the probability
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CE and NAIS simulation techniques are generally efficient to
estimate accurately a rare event probability in a large range of re-
alistic situations [16].
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