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The estimation of launch vehicle fall back safety zone is a crucial problem in space application since the 
consequence of a mistake may be dramatic for the population. It consists in estimating the probability 
that the distance between the launcher stage fall-back position calculated, with a trajectory simulation 
code, and the predicted one is lower than a given threshold. This probability of having a distance that 
exceeds the critical limit is of course low and may hardly be estimated with crude Monte Carlo methods. 
One proposes in this paper adaptive importance sampling algorithms when some parameters of input 
probability density suffer from uncertainty. This situation is a difficult issue for computational reasons 
since a complete importance sampling procedure is necessary to estimate the rare event probability 
associated to each combination of input density parameters. It is no more the case with the proposed 
parametric and non-parametric approaches based on the definition of a more adapted initial sampling 
density.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

During the launch of a satellite, the most important event is 
of course the lift-off. Nevertheless, a successful launch is not the 
end of the launcher task. Once their mission is completed, the 
launch vehicle stages are jettisoned and fall back to land or in the 
ocean. The estimation of launch vehicle fallout safety zone is a cru-
cial problem in aerospace because it potentially involves dramatic 
repercussions on the population and the environment. For that 
purpose, an efficient estimation of the probability that a launch 
vehicle stage falls at a distance greater than a given safety limit 
is strategic for the qualification of such vehicles. The fact that a 
launcher stage touches the ground far from its intended point is a 
rare event and its probability is consequently difficult to estimate 
with crude Monte Carlo simulations.

Rare event probability estimation is a growing part of complex 
system simulation for safety and risk analysis. Numerous statis-
tical and simulation techniques have been proposed to estimate 
such probabilities. Indeed, importance sampling [1–3], subset sim-
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ulation [4,5], first and second order reliability methods [6,7], or 
extreme value theory [8,9] are notably well known algorithms 
to estimate rare event probabilities on input–output “black-box” 
functions such as aerospace simulation codes. Their principles and 
advantages/drawbacks have also been deeply studied [10]. In this 
article, we will focus more precisely on importance sampling tech-
niques, with parametric or non-parametric optimization.

In order to perform the rare event probability estimation, sev-
eral parameters � of the simulation are set, such as the different 
parameters of input parametric density, and influence the proba-
bility estimate. A general approach consists in estimating the rare 
event probability associated to each combination of these different 
parameters with a complete importance sampling procedure. Nev-
ertheless, this method can be computationally cumbersome when 
the simulation of the complex system is time consuming. To solve 
this problem, we propose to use the samples obtained to estimate 
the rare event probability when the input distribution parameters 
are fixed to a reference value � = θ as an initialization of the im-
portance sampling procedure adapted to a new value of density 
parameter � = θ ′ .

This paper is organized as follows. We first briefly review the 
principles of parametric and non-parametric importance sampling 
algorithms. Then, we describe the proposed adaptive sampling ap-
proaches to handle uncertain input distribution parameters. The 
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final section is dedicated to the application of the proposed algo-
rithms on different analytical and aerospace test cases in order to 
assess their efficiency with respect to classical methods.

2. Quick review on adaptive importance sampling techniques

In this first section, we briefly review some basics on rare event 
estimation and more precisely on importance sampling. For the 
sake of conciseness, the complete details of the following tech-
niques are not given in this article. The reader can refer to [10]
for more information.

2.1. Context

Let us define a d-dimensional continuous random vector X with 
a probability density function (pdf) h0(·). In this article, we focus 
on the estimation of the probability that P (φ(X) > S) with φ(·), 
a continuous input–output scalar function φ(·) : Rd → R and S a 
threshold. The launch vehicle stage fall-back use case may be mod-
eled as an input–output function φ(·) with as inputs several launch 
vehicle characteristics and environmental conditions, and as output 
the distance between the estimated and the predicted fall-back po-
sitions. In this article, φ(·) is a complex simulation code developed 
at ONERA [11].

We assume here that Y = φ(X) is a random variable. Crude 
Monte-Carlo simulations [12] are a simple approach to estimate 
the probability P (φ(X) > S) but they are in fact not well suited to 
rare event probability estimation. Different alternatives to Monte-
Carlo can be considered, such as importance sampling [1–3], im-
portance splitting [4,5] or extreme value theory [8,9]. Only impor-
tance sampling techniques are analyzed in this article.

2.2. Adaptive importance sampling

2.2.1. Principle of importance sampling
The objective of importance sampling (IS) is to reduce the vari-

ance of the Monte-Carlo probability estimator without increasing 
the number of required simulations N . The main idea is to gen-
erate the multidimensional samples X1, . . . , XN with an auxiliary 
density h(·), which is able to generate more samples such that 
φ(X) > S than h0(·), and then to introduce a weight in the prob-
ability estimate [10]. The IS probability estimate P̂ IS is then given 
by

P̂ IS = 1

N

N∑
i=1

1φ(Xi)>S
h0(Xi)

h(Xi)
, (1)

where 1φ(Xi)>S is equal to 1 if φ(Xi) > S and 0 otherwise. The 
optimal auxiliary density hopt(·) (i.e. minimizing the estimator vari-
ance) is given in [13]

hopt(·) = 1φ(·)>Sh0(·)
P

. (2)

Since the optimal auxiliary density hopt(·) depends unfortunately 
on the probability of interest P , it cannot be determined in ad-
vance. Two main algorithms have been proposed to determine an 
efficient sampling pdf.

2.2.2. Cross-entropy optimization of importance sampling auxiliary 
density

Let us define hλ(·), a family of densities indexed by a parameter 
λ ∈ � where � is the multidimensional space of pdf parameters. 
The parameter λ is, for instance, the mean and the covariance ma-
trix in the case of Gaussian densities. The objective of importance 
sampling with cross-entropy (CE) is to determine the parameter 
λopt that minimizes the Kullback–Leibler divergence between hλ(·)

and hopt(·). This process is adaptive since the direct determination 
of λopt is difficult. In fact, one proceeds iteratively to estimate λopt

with an iterative sequence of thresholds,

q0 < q1 < q2 < · · · < qk < · · · < S

chosen adaptively using quantile definition. The complete details 
of this algorithm can be found in [14,15]. The cross-entropy opti-
mization algorithm for importance sampling density is given by

(i) k = 1, define hλ0 (·) = h0(·) and set ρ ∈ (0, 1)

(ii) Generate the population X(k)
1 , . . . , X(k)

N according to the pdf 
hλk−1 (·) and apply the function φ(·) in order to have Y1 =
φ(X(k)

1 ), . . . , Y N = φ(X(k)
N )

(iii) Compute the empirical ρ-quantile qk = Y�ρN� , where �a� de-
notes the largest integer that is smaller than or equal to a

(iv) Optimize the parameters of the auxiliary pdf family as

λk = argmax
λ∈�

{
1

N

N∑
i=1

[
1

φ(X(k)
i )>qk

h0(X(k)
i )

hλk−1(X(k)
i )

ln
[

hλ(X(k)
i )

]]}

(v) If qk < S , k ← k + 1, go to step (ii), else
(vi) Estimate the probability

P̂ CE(φ(X) > S) = 1

N

N∑
i=1

1
φ(X(k)

i )>S

h0(X(k)
i )

hλk−1(X(k)
i )

2.2.3. Non-parametric adaptive importance sampling
The objective of non-parametric adaptive importance sampling 

(NAIS) technique is to approximate the IS optimal auxiliary density 
given in equation (2) with kernel based probability distributions. 
The complete details of this algorithm can be found in [2,16]. Using 
Gaussian kernel densities, the NAIS algorithm is given by

(i) k = 1 and set ρ ∈ (0, 1)

(ii) Generate the population X(k)
1 , . . . , X(k)

N according to the pdf 
hk−1(·), apply the function φ(·) in order to have Y (k)

1 =
φ(X(k)

1 ), . . . , Y (k)
N = φ(X(k)

N )

(iii) Compute the empirical ρ-quantile qk = Y (k)
�ρN�

(iv) Estimate Ik = 1
kN

k∑
j=1

N∑
i=1

1
φ(X( j)

i )≥qk

h0(X( j)
i )

h j−1(X( j)
i )

(v) Update the Gaussian kernel sampling pdf with

hk(X) = 1

kN Ik det (Bk)

k∑
j=1

N∑
i=1

w j(X( j)
i )Kd

(
B−1

k

(
X − X( j)

i

))
,

where Kd is the standard d-dimensional Gaussian function 
with zero mean and a diagonal covariance matrix Bk =
diag(b1

k , . . . , bd
k) and w j

(
X( j)

i

)
= 1

φ(X( j)
i )≥qk

h0(X( j)
i )

h j−1(X( j)
i )

. The co-

efficients of matrix Bk are optimized according to the AMISE 
(Asymptotic Mean Integrated Square Error) criterion [17,18].

(vi) If qk < S , k ← k + 1, go to step (ii), else
(vii) Estimate the probability

P̂ NAIS(φ(X) > S) = 1

N

N∑
i=1

1
φ(X(k)

i )>S

h0(X(k)
i )

hk−1(X(k)
i )

CE and NAIS simulation techniques are generally efficient to 
estimate accurately a rare event probability in a large range of re-
alistic situations [16].
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