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In this present work, improved zigzag theories are developed for the flexural analysis of laminated 
plates using algebraic, hyperbolic, inverse trigonometric and trigonometric shear strain functions. The 
governing differential equations and boundary conditions of the structural system are obtained through 
the principle of virtual work. A generalized Navier closed form solution technique is applied for the 
flexural analysis of laminated plates. The present theories fulfill the transverse shear stress continuity 
and in-plane displacement continuity at each layer interfaces. Moreover, the present theories exhibit a 
constant variation of transverse displacement and parabolic variation of transverse shear stresses across 
the plate thickness. The tangential stress free boundary conditions are satisfied on the external surfaces 
of the panel; hence the necessity of artificial shear correction factor is ignored. The present theories 
consist of 5 unknowns as in the case of FSDT. Several numerical examples are carried out for a broad 
range of lamination sequence and geometric parameters. To reveal the potency and performance of the 
present models, numerical comparisons are made with the 3D elasticity solution and other numerical 
methods and it is observed that the present models perform very well for the static behavior of laminated 
plates.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Multilayered reinforced composite structures possess highly de-
sirable mechanical features such as high strength to weight ratio, 
better fatigue strength, better resistance to corrosion and design 
flexibility. As a result, reinforced composite structures are continu-
ously increasing in aerospace, automobile, civil, marine and many 
other industries. Notably, advanced composite materials such as 
glass-fiber, carbon-fiber and boron-fiber were used as a part of 
aircraft structures during World War II. Currently, the contribu-
tion of composite materials augmented in airborne vehicles such 
as military aircrafts, commercial aircrafts, gliders and helicopters. 
Specifically, composite materials are widely used in wing-fuselage 
fairings, control surfaces, leading and trailing edges of wing panels, 
engine pylon-fairings, engine cowling and rotor blades. In addi-
tion, complete structures being constructed by composite materials 
for modern gliders [1]. For instance, over 50% of structural com-
ponents of commercial aircrafts Boeing 787 and Airbus 350XWB 
are composed of composite materials than isotropic materials [2]. 

* Corresponding author. Fax: +91 3222 255303.
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Military airplanes (F-22, F-35 and F-117A) also widely used the 
composite materials.

Multilayered structures (flat plate and curved shells) composed 
of N number of layers that are perfectly bonded together and 
which can be made of isotropic, orthotropic, as well as anisotropic 
materials. Laminated structures possess high value of in-plane 
Young’s modulus ratio (E1/E2 = 5–40) to transverse shear mod-
ulus ratio (G12/E2 = 0.1–0.005). Hence, laminated structures be-
come weak at the interlaminar shear strength than the conven-
tional materials. As per two dimensional modeling (2D) concern, 
fulfillment of C0 requirement (interlaminar shear stress continuity 
and zigzag form of in-plane displacement continuity) of multi-
layered structure is a cumbersome subject. Thus an efficient and 
reliable mathematical model needs to be developed in order to ac-
curately address the C0 requirement of multilayered plates. Hence, 
a large number of shear deformation plate theories have been de-
veloped in the past few years, to predict them efficiently. Classical 
laminated plate theory [3] not considered the transverse shear ef-
fects, thus it is inadequate for sandwich plates. First order shear 
deformation theory [4–6] (FSDT) is the extension of Mindlin [7]
and Reissner [8] which assumes a linear variation of transverse 
shear strains through the plate thickness. Therefore an artificial 
shear correction factor has to be considered.
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Notations

a,b,h length, width and thickness of the laminate
x, y, z Cartesian coordinate of the laminate
θ fiber orientation angle
N total number of layers in the laminate
k respective layer
U k, V k in-plane displacement components of kth layer
W transverse displacement component
u0, v0, w0 mid-plane displacements
φx, φy mid-plane rotational deformations

E1, E2, E3 Young’s moduli
G12, G23, G13 Shear moduli
v12, v13, v23 Poisson’s ratios
σxx, σyy, σxy, τyz stresses at a point
m transverse shear stress parameter
f (z) transverse shear strain shape function
Ak, Bk, Ck, Dk zigzag parameters
q transverse load

To overcome the above confines higher order shear deforma-
tion theories (HSDT) were developed. Basset [9] introduced the 
displacement field in terms of the Taylor series expansion of thick-
ness coordinate. Lo et al. [10] have developed a higher order plate 
theory for homogeneous plates. Reddy [11] has given a theory, 
which gives parabolic distribution of transverse shear stresses and 
improved in-plane stresses than the FSDT. Ambartsumian [12] pre-
sented a model for anisotropic plates and shells. Marur and Kant
[13] have developed a theory for a laminated beams with third 
and second order of thickness coordinate in the in-plane displace-
ments and transverse displacement respectively. Swaminathan and 
Patil [14] have developed a higher order plate theory with 12 un-
knowns. Matsunaga [15] presented a mathematical model which 
contains ninth and eighth order of thickness coordinates in the 
in-plane displacement and transverse displacement respectively. 
Levinson [16] and Murthy [17] have presented a cubic order shear 
deformation theory which makes zero transverse shear stresses at 
the upper and lower surface of the plate.

Levy [18] introduced a sinus trigonometric shear deformation 
theory. Moreover, remarkable works based on various shear strain 
function can be found in [19–27]. The above mentioned theories 
represents a nonlinear variation of transverse shear stresses and 
achieves the traction free boundary conditions. However, these sin-
gle layer theories represent a continuous shear strain variation, 
which leads to transverse shear stress discontinuity at the inter-
faces. Consequently, various researchers have focused to develop 
efficient mathematical models to predict the geometric continuity 
(GC) and inter-laminar stress continuity (IC).

Carrera [28] studied a mixed layerwise theory in which Legen-
dre polynomials are handled and accurate evaluation of the struc-
tural responses is predicted. A layerwise model given by Srinivas 
[29] in which the in-plane displacement components are consid-
ered to be piecewise linear whereas normal displacement was 
taken as constant. Toledano and Murakami [30] have used the 
Reissner mixed variational principle in order to ensure the IC and 
they considered the piecewise linear functions in the in-plane dis-
placement component. Reddy et al. [6] discussed a two dimen-
sional layerwise theory, where the layerwise expansions are in-
volved in the in-plane and transverse displacement components. 
Ambartsumyan [31] has proposed a theory for homogeneous ma-
terials with IC and later on this theory has been refined by nu-
merous researchers. A discrete layerwise theory provided by Cho 
et al. [32]. To improve the dynamic response of laminated com-
posite plates they assumed a third and second order of thickness-
coordinate in the in-plane and normal displacement components 
correspondingly. Ferreira [33] given a layerwise theory in which 
the differential equation and the boundary conditions are derived 
using Radial basis function (RBF). The above listed discrete layer-
wise theories predict the zigzag requirement (ZZ) and transverse 
shear stress continuity at high computational cost. Because the 
unknowns are strongly dependent on the layer increment. As a re-

sult, several researchers were motivated towards the development 
of zigzag theories.

In zigzag theory, the unknowns are taken in each interfaces in-
trems of those at the midplane. Static and dynamic analysis of 
laminated composite plates were analyzed using a piecewise linear 
displacement field attempted by Di Sciuva [34]. Various structural 
responses are predicted for symmetric and unsymmetric laminated 
plates using a plate theory of Whitney [35], which was the exten-
sion work of Ambartsumyan [31]. Ren theory [36] which allows 
the in-plane displacement and transverse shear stress continuity 
for the cross-ply laminated composite plates. Bhaskar and Varadan 
[37] studied the transverse shear deformation effects for laminated 
plates with layer independent unknowns. They obtained the trans-
verse displacement and normal strain/stresses with adequate ac-
curacy. Later Cho and Parmerter [38] have given a model where 
the in-plane displacement components consist of the cubic order 
of thickness coordinate with Heaviside step function. Icardi [39]
used the third order zigzag model of Di Sciuva and Icardi [40]
for curvelinear plate using an eight noded element with 56 un-
known variables. A layerwise higher order zigzag theory (HOZT) 
presented by Lee et al. [41], assumes a cubic variation of in-plane 
displacement and parabolic variation of transverse shear stresses 
across the plate thickness. Carrera et al. [42] presented a model 
with zigzag functions which fulfills the ZZ effects at the interfaces. 
Demasi [43] given a shear deformation theory with the piecewise 
linear Murakami’s zigzag functions using finite element method 
(FEM) for multilayered plates. Sheikh and Chakrabarti [44] have 
made an attempt on cubic order zigzag theory using six-noded 
non-conformity element. They achieved the GC and equilibrium 
condition of transverse shear stresses at the interfaces. Chalak et al. 
[45] have presented a cubic order zigzag theory with Heavy side 
step function. The transverse displacement field designed in such 
a way which assumes quadratic and linear variation of core and 
face respectively. Kapuria et al. [46] have presented a HOZT for 
the dynamic analysis of highly anisotropic laminated beams with 
damping and they successfully achieved the tangential shear stress 
boundary conditions and IC. Further, the same authors developed 
a coupled zigzag theory [47] for the evaluation of the static re-
sponses of piezoelectric sandwich beams. Lo et al. [48] studied 
the structural behaviors using a global–local higher-order theory 
in hygrothermal environment. Though, the above noted polynomial 
zigzag theories are layer independent, interpreting the higher or-
der terms in the formulation is quite difficult.

So to avoid the above difficulties non-polynomial zigzag the-
ories have been developed [49–52,22,53–56]. They allow the ZZ 
requirement and IC with easy formulation and enhanced results. 
Also, the shear strain function makes the zero transverse shear 
stresses at the top and bottom surface of the plate a priori. Shimpi 
and Ghugal [49] have introduced a layerwise shear deformation 
theory with involving trigonometric shear strain function for a 
laminated beams. Later Shimpi and Ghugal [50] have improved the 
work of Shimpi and Ghugal [49]. Again overlooked Refs. [50] for 
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