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Deployment inertial effects of a spacecraft appendage on its flexible dynamics are investigated. The Euler–
Bernoulli beam theory and the actual deployment profile, in which appendage axial motion accelerates 
from static state and then decelerates to end at zero velocity and acceleration, are employed. The study is 
concentrated on the arm dynamic stiffness introduced by inertial effects of the arm deployment, and the 
resultant effects on the arm flexible motions. Lagrange’s equations and some appropriate shape functions 
in the series approximation method are employed to study the arm lateral elastic displacements. Finally a 
system of ordinary differential equations with time varying coefficients governing the system dynamics is 
developed. Solving the equations of motion reveals the importance of dynamic stiffness effects in precise 
positioning of appendages tip-payloads. The results indicate that the effects of deployment dynamic 
stiffness, however, vary significantly with the payload mass and arm deployment time. This investigation 
can help designers to understand in-depth the effects of axial inertial forces during arm deployment for 
trajectory planning and designing efficient deploying profile to increase the performance of the control 
devices.

© 2015 Published by Elsevier Masson SAS.

1. Introduction

Axially moving robot arms appear in a wide range of space 
applications such as robot manipulators, deploying antennas and 
inspection booms. These robot arms may carry a payload such 
as inspection devices. For the sake of clarity, this work refers to 
such complete deploying devices as “system” in this paper. The 
tip responses of such arms, during a typical deployment, may af-
fect the payload safety and operation; thus it is required to clearly 
identify the system dynamics through appendage deployment pro-
file. Deployment acceleration imposes some inertial forces on arm 
and affects its lateral dynamic responses. In order to have a clear 
understanding of the overall system dynamics, the inertial effects 
of deployment profile are required to be investigated; the results 
provide design considerations for deployment profile of the mech-
anisms. In this work a flexible link traveling through its ideal fric-
tionless joint while carrying a tip mass on its free end is consid-
ered. This work would like to investigate the deployment inertial 
effects on the arm elastic dynamics during unfolding. For such a 
problem, however, there are not many works in the literature that 
address the complete physical phenomenon and focus on the in-
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duced dynamic stiffness. Tabarrok et al. [1] have provided studies 
on the dynamics of the flexible beam in constant velocity deploy-
ment. In the same line, Wang and Wei [2,3] studied the deploy-
ment of no tip mass flexible robot arm through Newton’s second 
law while left out certain terms. Moreover, Kalaycioglu and Misra 
[5] provided the approximate analytical solutions for the equa-
tions of motion of no tip mass deploying beam while the effect 
of the axial acceleration on the total potential energy has not been 
simulated. On the other hand, Kim and Gibson [4], Stylianou and 
Tabarrok [6] and Al-Bedoor and Khulief [7] applied the finite ele-
ment approach to model a sliding flexible link. Stylianou et al. [6]
modeled the tip mass on the arm through finite element method 
(FEM) by developing elements with time-varying domains. While, 
Esmailzadeh and Nakhaie-Jazar [8], Esmailzadeh and Jalili [9] and 
Rastgoo et al. [10] studied the vibration of beams with tip mass 
and constant length due to base motion, following the assumed
mode method. There are some works which have concentrated on 
suppressing tip vibration of spacecraft booms. In this line for con-
stant length booms, Hu and Ma [11] have simulated the spacecraft 
as a hub with a cantilever flexible beam appendage which can 
undergo a single axis rotation; they have investigated the boom 
vibration reduction during attitude maneuver. As well, tip-position 
control of a deployable space structure has been investigated by 
Oh and Bang [12] to minimize the effect of bending vibration 
in a deployable manipulator. Due to the importance of the ap-
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pendage vibration in spacecrafts, some researches have analyzed 
thermally induced vibrations of spacecraft deployable appendages; 
for example, Shen et al. [13] and Li and Wang [14] applied the ab-
solute nodal coordinate formulation to analyze the flexible body 
dynamics of deployment structures under different temperatures 
to simulate space environments. The concentration of these ref-
erences is not on the spacecraft appendage deploying phase and 
in the most of them the vibration of the deployed appendages has 
been analyzed. Considering arms with time varying length, Bagheri 
Ghaleh et al. [15] have suggested a new approach to find the semi-
analytical solutions for the deploying arm carrying tip mass. In 
addition, Wang et al. [16] and Tang et al. [17] investigated the dy-
namics of deploying flexible arm without tip mass. The previous 
researches investigating deploying arms applied some usual math-
ematical functions to explain deployment profiles while factual 
trajectory of deployment and retraction has not been completely 
considered. An operational deployment should start at axial static 
state and after attaining the final required length then the axial 
movement comes back at rest. In this line, Bagheri and Malaek [18]
have presented a real continues trajectory for the arm deployment 
and they applied it in their other studies on dynamics of spacecraft 
deploying appendages [19,20]. If the factual deployment profile is 
not employed in the system simulation then the final axial posi-
tioning of the arm tip will not be stable due to the existence of 
the axial velocity and acceleration. While none of the previous re-
searches have been concentrated on investigating inertial effects of 
the arm deployment profile on the system dynamics through fac-
tual trajectory of deployment and retraction; the main contribution 
of this work is to investigate the inertial effects of a factual Ax-
ial Deployment Speed Profile (ADSP) and to present the resultant 
phenomenon which reveals the importance of the corresponding 
stiffness terms and the produced errors while ignoring them. Gen-
erally in the present work the flexible robot arm with end mass 
during actual deployment is studied. Inertial effects of the axial 
acceleration profile impose tension and compression forces on the 
arm which cause positive and negative stiffness effects, this dy-
namic stiffness (DS) is taken into account through deriving the 
equations of motion in the suggested deployment profile and in-
vestigated completely in this study.

In the next sections, following an approach the equivalent dy-
namic system is developed such that common shape functions of 
the without tip mass arm could be employed in the simulation of 
the carrying tip mass arm by assumed mode method. Finally using 
these shape functions, the series form is applied to mathematical 
simulation of the lateral elastic displacement and the equations 
of motion are derived as a system of ordinary differential equa-
tions (ODE) with time varying coefficients. Moreover, following the 
approach outlined by Stylianou and Tabarrok [6], an alternative 
simulation by finite element method is done and the solutions 
are compared to demonstrate the validity of the obtained arm re-
sponse at the considered ADSP. Solving the equations of motion, 
the effects of DS on the arm response are investigated while var-
ious deployment time and various payload masses are studied. In 
addition, the effects of deployment/retraction time and tip payload 
mass on the number of appropriate terms to series convergence 
are investigated.

2. Approach

A flexible link that can be modeled as an Euler–Bernoulli beam 
is considered while undergoes deployment from a large spacecraft 
and carries a tip mass on its free end (see Fig. 1). The in-orbit 
deployment is considered for the arm and therefore the gravity 
free condition is assumed in this simulation. The arm length which 
varies with time, t , is denoted by L(t). It is supposed that the arm 
is thin and ‘inextensible’ with a constant cross-sectional area A, 

Fig. 1. Deploying flexible arm carrying payload.

moment of inertia I , mass per unit length m and modulus of elas-
ticity E . The deploying arm carries a payload at its free end which 
can be modeled as a lumped mass, mtip , concentrated on the arm 
tip. In addition, as the total system response may affect the arm 
axial velocity and acceleration then it is assumed that robust de-
sign of deploying mechanisms provides the considered deployment 
profile.

2.1. Equations of motion

The arm lateral displacements at the distance x from the root 
are denoted by w and v in the y and z directions, respectively. 
For very flexible and long arms, significant axial displacement is 
resulted from large transverse deflections. The axial displacement 
u of an element at distance x is obtained from the following equa-
tion in which vx and wx denote differentiation of v and w with 
respect to x.

u(x, t) =
x∫

0

[
(vx)

2 + (wx)
2]dx (1)

As can be seen, u is a second order quantity with respect to the 
transverse displacements v and w; and its effect could be ne-
glected when the transverse displacements v and w are small 
quantities. While non-spinning spacecraft is considered, the trans-
verse displacements remains small with respect to the beam 
length through the supposed loading condition; therefore the ax-
ial displacement u is neglected and therefore a beam element, dm, 
has a velocity vector, V, which can be presented by

V = [L̇ v̇ + L̇vx ẇ + L̇wx]T (2)

the total kinetic energy will be as

K = 1

2

L∫
0

m

((
∂v(x, t)

∂t

)2

+
(

∂ w(x, t)

∂t

)2

+ L̇2
)

dx (3)

Here vxx and wxx denote the second order differentiation of v and 
w with respect to x, the total potential energy is

U = 1

2

L∫
0

EI
[
(νxx)

2 + (wxx)
2]dx + 1

2

L∫
0

P x
[
(vx)

2 + (wx)
2]dx (4)

The second term in the total potential energy of the arm produces 
dynamic stiffness (DS) effects; in which P x is the axial force at any 
section. Here, it is caused by the inertial effects of the arm axial 
acceleration through the deployment phase, which is

P x = −(
m

(
L(t) − x

) + mtip
)
L̈(t) (5)

The elastic displacements w and v are expanded in series approx-
imation as follows [2,5,16]:
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