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The maximum-crossrange problem is an optimal control problem of computing the maximum crossrange 
reachable by a hypersonic entry vehicle at a specified downrange, which has long known to be very 
difficult to solve due to its high nonlinearities and non-convexity. This paper presents how to convexify 
the problem so that it can be efficiently solved by successive second-order cone programming (SOCP). 
Particular focus is given on equivalent transformation of the original optimization objective and rigorous 
establishment of validity of the relaxation process used for convexification. In addition, it is observed that 
iteratively solving the SOCP problems may not always guarantee convergence to the original problem, 
a simple line search approach is proposed which is found critical to ensure the convergence of the 
successive SOCP method. Numerical demonstrations are provided to illustrate the effectiveness and 
efficiency of the proposed method and its applicability to both orbital and suborbital missions.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

In hypersonic lifting entry flight, a vehicle returning to the 
Earth from orbit or a burnout condition of a rocket, will con-
tinuously dissipate its energy along the gliding trajectory until a 
final state at a specified energy is reached. Then, terminal area 
energy management [1] is activated to prepare for the approach 
and landing of a reusable launch vehicle, or terminal guidance 
[2] is triggered. For a given amount of energy dissipation, the 
vehicle can cover certain downrange and crossrange. Determin-
ing the largest reachable area, also known as the landing foot-
print, is critical for mission planning of selecting a feasible land-
ing site or target. To get the footprint, we can repeatedly solve 
the maximum-crossrange problem, which is defined to maximize 
crossrange when downrange is specified, for a series of prescribed 
downranges. Nevertheless, the maximum-crossrange problem is 
very difficult to solve due to high sensitivity and nonlinearities in 
the dynamics and terminal constraints. Path constraints such as 
maximum heating rate and dynamic pressure further compound 
the difficulty. Hence much of the existing work has primarily fo-
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cused on approximating the footprint by making assumptions to 
simplify the computation.

Early work assumes a non-rotating Earth and an equilibrium 
glide condition to simplify the entry dynamics, and uses a scanning 
technique to approximate a footprint. The footprint is obtained 
by analytically solving a series of downrange-free maximum-
crossrange problems (downrange is not specified) without con-
sideration of path constraints [3–5]. The maximum-crossrange 
problem with full-state dynamics and path constraints has been 
numerically solved by a Legendre pseudospectral method [6,7]. An-
other analytic method to quickly generate a footprint is to solve 
a series of simple closest-approach problems based on a quasi-
equilibrium glide condition, and this condition is used to convert 
path constraints into bank-angle constraints [8]. In Ref. [9], vary-
ing drag profiles observing the path constraints can be flown to 
approximate the footprint in real-time.

In this paper, we will solve the maximum-crossrange problem 
directly by a successive method. This method is to iteratively solve 
a sequence of second-order cone programming (SOCP) problems 
until the solutions converge to the solution of the original problem. 
One critical feature of this method is that it utilizes the com-
plete entry dynamics. Hence, it is applicable to suborbital/abort 
missions and high L/D vehicles where the widely used equilibrium-
glide approximation is not always valid. Moreover, the method can 
efficiently solve the problem because the SOCP problem in each 
iteration is guaranteed to be solved in polynomial time by an 
interior-point method whenever the problem is feasible [10–13]. 
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Numerical evidence in this work will demonstrate that the SOCP-
based method obtains the solution significantly faster and more 
reliably than a general-purpose trajectory optimization software. 
This provides a distinct advantage since it enables quick checking 
of reachability of one/multiple potential targets without computing 
the entire footprint.

To apply successive SOCP, we first present how to convexify 
the original nonconvex problem into an SOCP formulation, par-
ticularly on convexification of the nonlinear performance index, 
entry dynamics, and terminal constraints. Relaxation is a common 
necessary technique for convexification, which involves enlarging 
admissible set of the original problem. Successful convexification 
should render the relaxed problem to have the same solution as 
the original problem. Ensuring validity of the relaxation is crucial 
but challenging. We will prove that the relaxation is indeed valid 
by applying a maximum principle in optimal control theory to the 
relaxed problem.

Next, we will iteratively solve the resulting SOCP formulation to 
approach the solution of the original problem. In general, proving 
convergence of this successive solution procedure is still an open 
challenge. When the SOCP formulation only involves linearization 
of concave inequality constraints, convergence is theoretically guar-
anteed [14]. Nevertheless, for complex systems with highly non-
linear dynamics and strict path constraints, convergence largely 
relies on a careful SOCP formulation of the original problem, such 
as the promising application of successive SOCP in a few practi-
cal engineering problems in recent years [15–17]. But, one notable 
observation in this paper is that the successive SOCP method may 
not converge for the maximum-crossrange problem. To ensure con-
vergence, we propose a simple line search to make appropriate 
progress based on the constraint violation in each iteration. Effec-
tiveness of this strategy in successive SOCP will be demonstrated 
by a number of numerical examples.

2. Problem formulation

In this section, we present formulation of the maximum-
crossrange problem including a nonlinear performance index, entry 
dynamics, and all path and terminal constraints.

2.1. Entry dynamics and path constraints

The dimensionless equations of motion of an entry vehicle over 
a spherical rotating Earth with respect to energy are [16]

r′ = (1/D) sinγ

θ ′ = cosγ sinψ/(rD cosφ)

φ′ = cosγ cosψ/(rD)

γ ′ = [L cosσ + (V 2 − 1/r)cosγ /r + 2�V cosφ sinψ

+ �2r cosφ(cosγ cosφ + sinγ cosψ sinφ)]/(V 2 D)

ψ ′ = [L sinσ/cosγ + (V 2/r) cosγ sinψ tanφ

− 2�V (tanγ cosψ cosφ − sinφ)

+ �2r sin ψ sinφ cosφ/cosγ ]/(V 2 D) (1)

where r is the radial distance from the Earth’s center to the 
vehicle, θ and φ are the longitude and latitude respectively, V
is the Earth-relative velocity, γ is the relative flight path angle, 
and ψ is the heading angle measured clockwise from the north. 
The variables r and V are scaled by R0 and 

√
g0 R0 respectively, 

where R0 is the Earth’s radius and g0 is the Earth gravitational 
acceleration at R0. The Earth self-rotation rate � is scaled by √

g0/R0. The terms L and D are dimensionless aerodynamic lift 
and drag accelerations in g0, that is L = 0.5R0ρV 2 SrefCL/m and 

D = 0.5R0ρV 2 SrefC D/m, where ρ is the atmospheric density, Sref
is the reference area, m is the vehicle mass, and CL (C D ) is the lift 
(drag) coefficient. The velocity, which differential equation is not 
included in Eq. (1), can be obtained by V = √

2(1/r − e), where 
the dimensionless energy e is used as the independent variable in 
Eq. (1).

In this paper we assume a given angle-of-attack profile, as in 
Ref. [8], and the bank angle σ , defined to be positive for banking 
to the right, is used to shape the entry trajectory. The bank-angle 
magnitude is generally bounded as follows

σmin ≤ |σ | ≤ σmax (2)

where σmin and σmax are the lower bound and upper bound, re-
spectively, and 0 ≤ σmin ≤ σmax ≤ 90◦ . The above constraints are 
nonconvex if σmin > 0.

Path constraints on maximum allowed heating rate Q̇ , dynamic 
pressure q, and normal load n are given by

Q̇ = kQ

√
g0 R0

3.15√
ρ V 3.15 ≤ Q̇ max (3)

q = 0.5 g0 R0 ρV 2 ≤ qmax (4)

n =
√

L2 + D2 ≤ nmax (5)

where kQ is a constant, Q̇ max, qmax, and nmax are all dimensional 
with units of W/m2, N/m2, and g0, respectively, and ρ , a function 
of r, has a unit of kg/m3. Note that all path constraints are actually 
functions of r and e. At each e, we can find a minimum altitude 
numerically by intersection of the active path constraints; namely, 
the path constraints can be equivalently converted into

r(e) ≥ l1(e) (6)

where l1 is a lower bound on r. We can also impose an energy-
dependent upper bound on r to make the vehicle always under 
sufficient aerodynamic control [17], i.e.,

r(e) ≤ l2(e) (7)

where l2 could be determined by requiring D ≥ Dmin.

2.2. Terminal constraints and performance index

First, terminal constraints include those on final altitude and 
flight path angle, i.e.,

r(e f ) = r∗
f , γ (e f ) = γ ∗

f (8)

Note that the terminal flight path angle can also be limited in a 
range without loss of generality, i.e., γ (e f ) ∈ [γ f ,min, γ f ,max]. The 
final energy e f is computed by e f = 1/r∗

f − (V ∗
f )

2/2, where V ∗
f is 

the required final velocity.
Another terminal constraint is related to the final longitude and 

latitude. Let us see Fig. 1 where point O (θ0, φ0) indicates the initial 
location of the vehicle, point P (θP , φP ) is a point along the initial 
heading direction ψ0 at O , and point F (θ f , φ f ) is the final location 
of the vehicle. The maximum-crossrange problem requires 	 OPF =
90◦ , which results in the following right-angle constraint

cos(SOF) = cos(SOP) cos(SPF) (9)

where SOP is the specified downrange and SPF is the crossrange 
that needs to be maximized. For given SOP , point P has the fol-
lowing coordinate

φP = sin−1(sinφ0 cos(SOP) + cosφ0 sin(SOP) cosψ0)

θP = θ0 + atan2(sinψ0 sin(SOP) cosφ0, cos(SOP) − sinφ0 sinφP )

where atan2 is a four-quadrant inverse tangent function, and
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