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This paper addresses the computation of radiative exchange factors through Monte Carlo ray tracing 
with the aim of reducing their computation time when dealing with the finite element method. Both 
direction and surface samplings are studied. The recently-introduced isocell method for partitioning the 
unit disk is applied to the direction sampling and compared to other direction sampling methods. It is 
then combined to different surface sampling schemes with either one or multiple rays traced per surface 
sampling point. Two promising approaches present better performances than standard spacecraft thermal 
analysis software. The first approach combines a Gauss surface sampling strategy with a local isocell 
direction sampling, whereas the second approach fires one ray per surface points using a global isocell 
direction sampling scheme. The advantages and limitations of the two methods are discussed, and they 
are benchmarked against a standard thermal analysis software using the entrance baffle of the Extreme 
Ultraviolet Imager instrument of the Solar Orbiter mission.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The finite element method (FEM) is widely used in mechanical 
engineering, in particular for space structure design. However, it is 
not yet often exploited for thermal engineering of space structures 
for which the use of the finite difference method (lumped param-
eter or network-type method) is still commonplace [1,2]. When 
thermal and structural analyses are based on different meshes and 
methods, one limitation is that coupled analyses are not straight-
forward.

The main reason why FEM is not often used for heat transfer 
analysis of spacecraft systems is that the computation of the ra-
diation couplings, which are necessary for radiative heat transfer, 
is extremely expensive. The radiation (or radiative) coupling GRi, j

between face i and face j is equal to the radiative exchange fac-
tor (REF) Bi, j between face i and face j multiplied by the area of 
face i and its emittance: GRi, j = Aiεi Bi, j . The radiative exchange 
factor Bi, j is defined as the fraction of the total energy emitted by 
face i that is absorbed by face j either directly or after any number 
or type of reflections and/or transmissions. It generalizes the view 
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factor Fi, j which considers only the diffuse energy leaving face i
that is directly intercepted by face j.

An additional difficulty is that classical reduction methods 
which rely on the superposition of thermal modes [3] cannot be 
applied in view of the nonlinear nature of heat transfers cou-
pling conduction and radiation. Alternative projection methods 
were proposed in the literature. In [4,5], the linear reduced ba-
sis is enriched with, e.g., modal derivatives, but several iterations 
are required to converge to an adequate basis. There also exist 
other modal bases including nodal temperature derivatives [6] or 
trajectory piecewise linearization [7]. Proper orthogonal decompo-
sition was also used to derive the optimal basis corresponding to 
a specific load case [8–12]. The main drawback of these reduction 
schemes is that simulations using the full model have to be carried 
out.

Instead of reducing stricto sensu FEM-based thermal models, an-
other strategy for decreasing the computational burden is to focus 
specifically on the REFs. In this context, the most general method 
for REF computation is Monte Carlo ray tracing (MCRT) [13–15]. 
This method is, however, very computationally expensive due to 
the great number of elements composing a FE model. As a result, 
a great number of rays have to be fired to obtain meaningful REFs.

Monte Carlo methods were introduced in nuclear engineering 
during the 1940s and were first utilized for thermal radiation 
problems in the early 1960s by Fleck [16] and Howell [17,18]. In 
aerospace engineering, the MCRT method was introduced in the 
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1970s with the NEVADA code [2]. Nowadays, it is part of most real-
istic radiative heat transfer software. The drawback of crude Monte 
Carlo techniques is their relatively low convergence rate τ which 
is the rate at which the error decreases as the number of traced 
rays increases: error ∝ N−τ with N the number of rays. For crude 
Monte Carlo techniques, the error is inversely proportional to the 
square root of the number of rays, i.e. τ = 0.5 [19–22]. Many ac-
celeration techniques were introduced in the different fields apply-
ing MCRT. This includes hardware acceleration using, e.g., graphics 
processing units. In [23], a broad classification of software accel-
eration techniques is given, namely computing faster ray-face in-
tersections by reducing the number of intersections to compute or 
improving the intersection algorithms, firing fewer rays or firing 
generalized rays. We note that the latter approach is not suited for 
REF computation [24].

The main thrust of this study is to accelerate REF computation 
by firing less rays, which requires to improve the convergence rate 
of MCRT. One possible way for increasing the convergence rate is 
to consider quasi-Monte Carlo methods [19,25]. Unlike the classical 
Monte Carlo method which relies on a sequence of pseudo-random 
numbers, the quasi-Monte Carlo method exploits low-discrepancy 
sequences. Sobol and Halton sequences were for instance used in 
MCRT problems [26,27] to generate more uniform sampling direc-
tions.

Another quasi-Monte Carlo approach for generating more uni-
form samples over the integration domain is to use stratified sam-
pling [19,25,28]. Stratified sampling consists in dividing the inte-
gration domain into strata which are randomly sampled indepen-
dently to avoid aliasing. In [24], stratified sampling is applied to 
the hemisphere to generate more uniform directions. Each stratum 
in the method corresponds to the same view factor share of the 
hemisphere, but the strata do not exhibit the same shape, which 
can deteriorate the performance in particular configurations.

In this context, the first contribution of the paper is to improve 
the direction sampling of MCRT through the recently-developed 
isocell disc sampling method [29]. Specifically, more uniformly-
shaped strata are sought. The second contribution of the paper is 
to study carefully the spatial sampling of the emitting face [30]
and its interaction with direction sampling, something which has 
been rarely carried out in the literature.

The paper is organized as follows. The classical Monte Carlo 
method is briefly described in Section 2. Different direction sam-
pling strategies are presented in Section 3, with a particular atten-
tion to the isocell method. The application of different direction 
sampling strategies to the computation of pointwise view factors 
concludes Section 3. The interaction between direction and surface 
samplings is studied in Section 4 with the aim to compute finite-
surface-to-finite-surface REFs. Local (for each surface sample) and 
global (distributed among all surface samples) direction sampling 
strategies are analyzed. Section 5 presents the application of two 
selected combinations of direction and surface samplings to a real 
space structure. The conclusions of the paper are summarized in 
Section 6.

2. Monte Carlo ray tracing

MCRT consists in tracing the history of statistically meaning-
ful samples of photons (or photon bundles called rays) from their 
point of emission to their final absorption. It can be used to com-
pute the view factors, but the REFs can also be determined with-
out adding too much complexity by taking into account multiple 
reflections/transmissions and real surface properties. Unlike clas-
sical analytical and numerical quadrature methods which become 
rapidly ineffective for complex geometries, the computational bur-
den of Monte Carlo methods increases only linearly with the size 
and complexity of the problem.

The basic idea of Monte Carlo methods is that the number of 
rays must be large enough to be statistically meaningful so that 
the REF is accurately computed. If Ni rays are emitted from the 
surface i among which Nij rays are absorbed by surface j either 
directly or after any type/number of reflections/transmissions, the 
REF Bi, j between surfaces i and j is:

Bi, j = lim
Ni→∞

Nij

Ni

∼= Nij

Ni

∣∣∣∣
Ni>>1

(1)

Because it is a stochastic method, the results exhibit some fluc-
tuations, but the variance decreases as the number of samples 
increases. The inconvenience of crude Monte Carlo techniques is 
their relatively low convergence rate, i.e., the error is inversely pro-
portional to the square root of the number of rays [19–22]. We 
note that the view factor Fi, j is obtained by considering only di-
rect absorption without any reflection or transmission of any kind.

3. Direction sampling

To compute the exchange factors between one specific surface 
and the surrounding surfaces, the rays must be distributed over 
the directions and over the emitting surface, in the same way that 
analytical view factor computation involves a double integration. 
Direction sampling of the unit hemisphere leads to the pointwise 
view factor FdAi ,A j between infinitesimal surface dAi and finite 
surface A j which is then integrated over the emitting surface Ai
with surface sampling. This section focuses on direction sampling 
and compares the performance of different schemes, including the 
new isocell method which aims at increasing the convergence rate 
and accuracy of MCRT. The effect of spatial sampling is discussed 
in Section 4.

3.1. Sampling schemes

The most common direction sampling method is based on the 
cosine emission law (Lambert’s cosine law [31]) for perfectly dif-
fuse surfaces. The polar angle θ and azimuthal angle φ can be 
derived from two pseudo-random numbers Rθ and Rφ in [0, 1]
[15,21]:

θ = arcsin
√

Rθ φ = 2π Rφ (2)

with the ray direction given by:

r(θ,φ) = [sin θ cosφ sin θ sinφ cos θ ]ᵀ (3)

Based on Nusselt’s analogy [32] which states that the pointwise 
view factor between a point P on surface i and a surface j is equal 
to the area of its orthographic projection1 A′

j divided by π (ra-
tio of the projected area to the area of the unit disc), Malley [33]
proposed an equivalent method to generate the ray directions by 
sampling the unit disc with uniformly distributed pseudo-random 
numbers. Each point on the unit disc defines a direction by pro-
jecting it back to the unit hemisphere. With this method, the ray 
directions are

r(r, φ) =
[

r cosφ r sinφ
√

1 − r2
]ᵀ

(4)

where φ is given by Eq. (2). Eq. (4) is equivalent to Eq. (3) since r =
sin θ . Crude Monte Carlo, which samples the unit disc randomly as 
in Fig. 1(a), is the technique used by the European Space Agency 
thermal analysis software ray tracing engine ESARAD [21,34].

1 The orthographic projection is composed of a projection on the unit sphere cen-
tered on point P and an orthogonal projection onto the plane of tangent to the 
surface i and point P .
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