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Nowadays, viable estimations of transonic aerodynamic loads can be obtained through the tools of 
computational fluid dynamics. Nonetheless, even with the increasing available computer power, the 
cost of solving the related non-linear, large order models still impedes their widespread use in 
conceptual/preliminary aircraft design phases, whereas the related nonlinearities might critically affect 
design decisions. Therefore, it is of utmost importance to develop methods capable of providing 
adequately precise reduced order models, compressing large order aerodynamic systems within a 
highly reduced number of states. This work tackles such a problem through a discrete time recursive 
neural network formulation, identifying compact models through a training based on input–output data 
obtained from high-fidelity simulations of the aerodynamic problem alone. The soundness of such an 
approach is verified by first evaluating the aerodynamic loads resulting from the harmonic motion of 
an airfoil in transonic regime and then checking aeroelastic limit cycle oscillations inferred from such a 
reduced neural system against high fidelity response analyses.

© 2015 Published by Elsevier Masson SAS.

1. Introduction

Nowadays, a viable estimation of transonic aerodynamic loads 
acting on flying airplanes is often provided by computational fluid 
dynamics (CFD) codes, so allowing to adequately tackle aircraft sta-
bility and response analyses, for both flight mechanics [1,2] and 
aeroelastic [3,4] applications. However, such simulations are still 
computationally expensive, being characterized by a large number 
of unknowns and often limited to the most significant validation 
cases [3,5,6].

In order to introduce the typical nonlinear effects encountered 
in transonic flows, researchers have focused some of their efforts 
toward the development of reduced order models (ROMs). These 
compact system representations are designed to maintain an ac-
curacy as close as possible to that of their parent high-fidelity 
aerodynamic analyses. An extensive overview of these methods can 
be found in [6] and references therein. The techniques mainly em-
ployed in the literature for the generation of reduced order models 
can be roughly subdivided in three main branches.

The first is the group of subspace projection techniques, such 
as the proper orthogonal decomposition [7,8], and, in a general-
ized sense, the harmonic balance method [9]. These approaches 

E-mail address: andrea.mannarino@polimi.it (A. Mannarino).

project the high fidelity model into a subspace spanned by a very 
efficient basis, which is able to represent any solution of inter-
est through a small number of states. With proper orthogonal 
decomposition-based techniques, the related numerical bases are 
computed mostly through the singular value decomposition of a 
snapshot matrix, whose columns are time samples of very accurate 
responses to well chosen forcing terms [10]. The harmonic balance 
method on the other hand considers directly a truncated Fourier 
series as reduced order basis, limiting its application to periodic 
solutions [11,12].

The second branch is related to the adoption of generalized 
interpolation methods, e.g. radial basis function or Kriging inter-
polators [13,14]. Such methods employ a high-fidelity system for 
pointwise evaluations of its response, while a high order interpo-
lation is applied for computing the response at any intermediate 
points of interest. Therefore, this ROM works as a general non-
linear input–output mapping, permitting to represent the dynamic 
system analytically. Even if it is a robust technique, its application 
seems limited to the evaluation of nonlinear aeroelastic systems 
stability, as demonstrated in the cited references.

The third group is represented by identification techniques 
based on input–output data pairs. The Volterra series method [6], 
i.e. the generalization of the impulse response to nonlinear sys-
tems, belongs to this group. Another approach, the one followed 
in this work, is characterized by the adoption of neural networks. 
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Nomenclature

b airfoil/wing semi-chord
c airfoil chord
CL, CM coefficients of lift and moment
e network output error
h, θ plunge and pitch degree of freedoms
k = ωc

V∞ reduced frequency
m airfoil/wing mass
r2
θ = Jθ

mb2 nondimensional airfoil/wing moment of inertia
u network input
V ∗ = V∞

ωθ b
√

μ
reduced velocity

Wa, Wb, Wc network synaptic weights
xθ = Sθ

mb nondimensional airfoil/wing static unbalance

x network state
y network output
� network Jacobian matrix
μ = m

πρ∞ b2 fluid-mass ratio

ρ∞ fluid density
τs = ωθ t structural adimensional time
s = V∞t

b aerodynamic adimensional time
�(v) network activation function
ωh, ωθ uncoupled plunging and pitching circular frequencies
CFD Computational fluid dynamics
DTRNN Discrete time recurrent neural network
LCO Limit cycle oscillation
ROM Reduced order model

Recently, discrete time recurrent neural networks have been em-
ployed in the order reduction of relatively simple aeroelastic sys-
tems [15–17]. In particular, the first two references employ a 
neural system with radial basis functions as computational units, 
within a framework that can be interpreted as a system identifi-
cation based on a nonlinear autoregression with exogeneous input 
[18]. Reference [17] instead employs a support vector machine in 
the identification of unsteady aerodynamic loads. This technique 
has shown promising results in various machine learning applica-
tions and seems to have found its way also in problems where 
compact system representations are required.

Particular emphasis will be given in the present work to the 
determination of limit cycle oscillation (LCO) solutions of nonlinear 
aeroelastic systems.

In the context of the related theory, an LCO is a dynamic bi-
furcation. The reader can find a vast supporting literature on the 
analysis of all the different bifurcation types, regarding generic 
nonlinear systems [19,20] and aeroelastic applications [5,21]. A few 
details pertaining to the aeroelastic case are considered here.

Within the framework of fluid–structure interaction, LCOs may 
be driven by aerodynamic nonlinearities, and the related behavior 
can be associated to the formation of large vortical flow structures, 
as in the case of low speed, high angle of attack flow regimes [22,
23], or to complex shock motions in transonic flows, even when 
using Euler flow models [5,24,25]. In this last case, which is of 
main interest in this work, a nonlinear aerodynamic model would 
allow the simulation of this phenomenon.

Such a moving shock wave may undergo very large displace-
ments, eventually disappearing and reappearing during an LCO 
period [5,9]. Because of the fact that a shock wave introduces a 
discontinuity in the flow field, this kind of behavior can be as-
sumed as dynamically nonlinear [24].

Also structural nonlinearities can lead to LCOs, whether the 
flow is transonic or not, as presented in [23,26,27], but the study 
of this kind of phenomena is not of interest here.

Aeroelastic limit cycles are usually determined in numerical ex-
periments by time marching integrations [5,6]. Such methods seem 
to be used mainly to validate the stability changes predicted by 
Hopf bifurcation analyses with varying dynamic pressure, lead-
ing to stable/unstable responses or LCOs. Here instead, the system 
bifurcation point will be identified through free responses calcu-
lations, checking a posteriori if the system is asymptotically stable 
around the origin or if its behavior converges toward an LCO.

In this work a discrete time recurrent neural network (DTRNN) 
in state-space form [28] is used to identify nonlinear aerodynamic 
responses and compute aeroelastic limit cycle oscillations. Such 
formulation permits to consider the state and the input of the 
network only one step behind the current state, without keeping 

the old values of the input (and output in the case of references 
[15–17]) of several previous time steps in memory.

The present effort has multiple goals: present a novel, neu-
ral network-based ROM technique in the discrete time domain, 
analyze the performance of this methodology in Euler-based aero-
dynamic loads identification, perform nonlinear aeroelastic simula-
tions comparing the results with the related high fidelity outcomes 
and determine the ROM sensitivity to parameter changes.

The work is organized as follows. In Section 2.1 the CFD solver 
employed is presented and all its main features are detailed. In 
Section 2.2 an introduction to neural networks terminology and 
to its recurrent framework for dynamic systems modeling is pro-
vided. Section 2.3 details the training algorithm used to optimize 
the network parameters in order to predict any response of in-
terest. Section 3 presents in detail the results obtained for two 
standard test cases: an airfoil oscillating in pitch and a two degree-
of-freedom typical section undergoing limit cycle oscillations due 
to large shock wave motion. Finally, in Section 4 the most interest-
ing findings of this work are resumed.

2. Numerical methodology

2.1. Aerodynamic solver

For a high fidelity modeling of the aerodynamic problem, the 
in-house solver AeroFoam developed at Politecnico di Milano [29]
is chosen. This application is supported by OpenFOAM libraries 
for the management of the mesh data, the computation of the 
numerical solution and the pre/post-processing phases. It is a 
Reynolds-Averaged Navier Stokes (RANS) density-based solver for 
aero-servo-elastic applications, written exploiting the Arbitrary-
Lagrangian-Eulerian formulation for moving grids. It is a finite 
volume, cell-centered solver, that can treat both structured and un-
structured grids. In the present computations, the Euler flow model 
is chosen, therefore the effects of viscosity and thermal conductiv-
ity will be neglected.

AeroFoam is the first density-based RANS solver implemented 
within the framework of OpenFOAM, realized to overcome the lim-
its of built-in pressure-based solvers in the transonic regime, e.g.
sonicFoam, because their non-conservative formulation does not 
permit to solve accurately transonic and supersonic regimes.

Regarding the present inviscid application, the convective fluxes 
are discretized by the classical Roe’s approximated Riemann solver, 
which is a first order, monotone scheme, blended by the centered 
approximation provided by the Lax–Wendroff scheme, resulting in 
a second order, high-resolution scheme. The spatial discretization 
is completed by the entropy fix of Harten and Hyman and the flux 
limiter by van Leer [30].
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