ARTICLE IN PRESS

Aerospace Science and Technology ••• (••••) •••-•••

Contents lists available at ScienceDirect

ELSEVIER

Aerospace Science and Technology

www.elsevier.com/locate/aescte

Mathematical modeling and control of a tilt-rotor aircraft

Xinhua Wang^a, Lilong Cai^b

^a Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia

^b Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China

ARTICLE INFO

Article history: Received 3 September 2014 Received in revised form 19 May 2015 Accepted 19 October 2015 Available online xxxx Keywords: Tilt-rotor aircraft Rotor thrust

Blade pitch angle Uncertainties estimation Mode transition

ABSTRACT

This paper presents a novel model of large-size tilt-rotor aircraft, which can operate as a helicopter as well as being capable of transition to fixed-wing flight. Aerodynamics of the dynamic large-size tiltrotors based on blade element method is analyzed during mode transition. For the large-size aircraft with turboshaft engines, the blade pitch angles of the rotors are regulated to vary according to the desired level of thrust, and the following expressions are formulated explicitly: rotor thrust and blade pitch angle. A finite-time convergent observer based on Lyapunov function is developed to reconstruct the unknown variables and uncertainties during mode transitions. The merits of this design include the modeling of dynamic large-size tilt-rotor, ease of the uncertainties estimation during the tilting and the widely applications. Moreover, a switched logic controller based on the finite-time convergent observer is proposed to drive the aircraft to implement the mode transition with invariant flying height.

© 2015 Published by Elsevier Masson SAS.

1. Introduction

Helicopters and fixed-wing airplanes have their advantages and shortcomings. Helicopters can take off and land vertically, but they cannot fly forward in high speed, and their payloads are very limited comparing to fixed wing plane with the same gross weight [1–4]. On the other hand, conventional fixed-wing aircrafts can fly forward in high speed and large payloads. However, they cannot take off and land vertically, and the appropriate runways are required.

There are several ways to perform the vertical takeoff and landing (VTOL) maneuver such as tilting rotor, tilting wing, thrust vectoring, tail sitter, tilting fuselage, flapping wing, multi-propeller multifunction, etc. There are some types of thrust vectoring aircrafts, such as manned aircrafts AV-8B Harrier [5] and F-35 [6]. These aircrafts are designed for actual combat. The reason why these aircrafts can perform vertical takeoff and landing is due to their jet engines with tilt jettubes. Although they are powerful, the jet gas is very hot and harmful, and they can easily destroy the ground environment or inflict injuries to people nearby. These aircrafts are not suitable for many civil and rescue operations. Moreover, such VTOL aircraft with jet engines is less efficient in hover than a conventional helicopter or a tilt-rotor aircraft of the same gross weight [7].

http://dx.doi.org/10.1016/j.ast.2015.10.012

1270-9638/© 2015 Published by Elsevier Masson SAS.

One of the classical tilt-rotor aircrafts is V-22 [8]. Similarly the Bell Eagle Eye UAV [9] which is also based on tilt-rotor technology has a large success in the civil and military domains. However, this design brings its own problems, since the degradation in stability is usually observed in high speed forward flight (airplane mode) [10]. Moreover, the involved equations of motion are highly coupled and nonlinear. The fundamental characteristics of V-22, which includes a very high roll moment of inertia, result in a tendency to pilot-induced oscillation. Extreme attention must be paid to preventing over control in the roll channel. Moreover, the roll channel is easily affected by pitch dynamics. V-22 is a large "U"-shaped structure with two very large masses at the ends (the engines). The result is the need for long and flexible runs of hydraulic, electrical, and mechanical lines that are more susceptible to tensile loads, bending loads, abrasions, and deformations than conventional helicopter designs. Because of the high disk-loading (129.63 kg/m²), the downwash velocity of V-22 is about twice that of any conventional helicopter. And because of the side-by-side placement of the prop-rotors, there are two distinct downwash wakes that are transverse to the flight direction. This has several operational implications that bear on safety issues.

Tail-sitters, as the name implies, sit on their tail when not in flight [11-14]. They take off and land vertically, making them a member of the VTOL family of aircraft. Equipped with a powerful engine, tail-sitters can utilize a "prop-hanging" technique to hover in place. Additionally, they can make transition to a level flight mode and fly in a conventional fixed-wing mode, which is more energy efficient than the hover mode. These aircrafts have

E-mail address: wangxinhua04@gmail.com (X. Wang).

ARTICLE IN PRESS

X. Wang, L. Cai / Aerospace Science and Technology ••• (••••) •••-•••

I
2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
50
50
59
60
б1 со
62
63
64
65

Nomenclature				
<i>m</i> .	weight of each engine	dT:	incremental lift of rotor	
Т	rotor thrust under rated power	$d\Omega$.	incremental drag torque of rotor	
1 e	thrust-to-weight ratio of engine	Ω_{i}	drag torque of rotor	
pe m	gross weight of aircraft		drag torque coefficient of rotor	
т. Т.	rotor thrust		sum of rotor thrusts	
C_{τ}	rotor thrust coefficient	I Va	airflow generated by rotor tilting	
Q_i	rotor speed	V BE	resultant velocity at the free wing	
0	air density	v rt Q c	angle of attack for free wing	
σ	rotor solidity	d _f	distance between rotor center to leading edge of free	
n	blade number	uj	wing	
P R	rotor radius	L	(i - 1, 2, 3, 4) lift force generated by free wing	
0h	blade span-chord ratio	L1 D:	(i = 1, 2, 3, 4) lift force generated by free wing	
A	area of rotor disk	ΔI :	(i = 1, 2, 3, 4) uncertain lift force for free wing	
σ	gravity acceleration	ΔD_i	(i = 1, 2, 3, 4) uncertain drag force for free wing	
Cd0	constant profile drag coefficient	Sei	area of free wing	
ĸ	induced power factor	C_{f}	lift coefficient brought by angle of attack α_{f} to free	
b	chord length of blade	cj	wing	
PL	power loading of rotor	CDf0	drag coefficient when angle of attack α_f is equal to	
DL	disk loading of rotor	CDJU	zero	
R _{2r}	rotor radius of aircraft with two rotors	δι	(i = 1, 2, 3, 4) flap bias angle of free wing	
R_{ε}	Reynolds number	Cr	lift coefficient brought out by flap bias angle δ_i	
М	Mach number	e _f	value of the Oswald's Efficiency Factor for free wing	
DLOT	Desired disk loading of rotor	Ar	span-chord ratio of free wing	
A_w	span-chord ratio of fixed wing	αmax	angle of attack with respect to maximal lift coefficient	
WL _w	desired wing loading of fixed wing	IIIdX	of free wing	
Sw	wing area of fixed wing	Li	(i = 5, 6) lift force generated by fixed wing	
Lw	wing span of fixed wing	\dot{D}_i	(i = 5, 6) lift force generated by fixed wing	
C _w	chord length of fixed wing	ΔL_i	(i = 5, 6) uncertain lift force for fixed wing	
S _{front}	area of front fixed wing root	ΔD_i	(i = 5, 6) uncertain drag force for fixed wing	
S _{fi}	area of free wing	α.	angle of attack for fixed wing	
$\dot{\Gamma_g}$	right handed inertial frame	S _{ri}	area of the left (right) fixed wing	
Γ_{b}	frame attached to the aircraft's fuselage	$C_{w\alpha}$	lift coefficient brought by angle of attack α to fixed	
Γ_{eta}	right handed inertial frame of the tiltrotor		wing	
ψ	yaw angle	C_{w0}	lift coefficient when angle of attack α is equal to zero	
θ	pitch angle	C_{Dw0}	drag coefficient when angle of attack α is equal to	
ϕ	roll angle		zero	
R _{bg}	transformation matrix for Γ_b to Γ_g	δ_i	(i = 5, 6) flap bias angle of fixed wing	
$R_{\beta b}$	transformation matrix for Γ_{β} to Γ_{b}	$C_{w\delta}$	lift coefficient brought out by flap bias angle δ_i	
$V_{\beta X}$	air relative velocity on axis E_x^{β}	e_w	value of the Oswald's Efficiency Factor for fixed wing	
Vev	air relative velocity on axis E_{μ}^{β}	f _{rl}	yaw force generated by vertical tail	
Var	air relative velocity on axis F^{β}	f_{rd}	drag force generated by vertical tail	
$V \beta Z$	all relative velocity with respect to frame Γ	G_{β}	gyroscopic moment for tilting rotors in frame Γ_eta	
v b v ·	induced velocity of rotor disk	G_b	gyroscopic moment for tilting rotors in frame Γ_b	
V ₁	induced velocity in hover	$ au_T$	thrust vectoring moment in frame Γ_b	
r r	length from rotor center to blade element	C _i	(i = 1, 2, 3, 4) center of rotor	
, В.	relative inflow angle at blade element	Q	sum of drag torques of rotors in frame Γ_eta	
ρ_*	angle of attack of blade element	Q_r	sum of drag torques of rotors in frame Γ_b	
(Q.).	hlade nitch angle	$ au_eta$	tilting pitch moment in frame Γ_b	
Ψ* (07;	pitch angle at $r/R = 0.7$	$ au_\delta$	moment generated by lift of fixed wings in frame Γ_b	
$\Delta \varphi_*$	linear torsion of blade	$ au_f$	moment generated by free wings in frame Γ_b	
U	resultant velocity at disk	$ au_{fd}$	moment generated by drag of fixed wings in frame Γ_b	
dL	lift per unit span on blade element	$ au_{xd}$	moment generated by drag of free wings in frame Γ_b	
dD	drag per unit span on blade element	J_1	moment of inertia with respect to axis $E_{x_0}^{P}$	
C	lift coefficient of blade	J ₂	moment of inertia with respect to axis E_y^{β}	
C_d	drag coefficient of blade	13	moment of inertia with respect to axis E_{τ}^{β}	
dr	incremental radial distance of blade	J4	tilting moment of inertia	
		<i>.</i> .	.	

Please cite this article in press as: X. Wang, L. Cai, Mathematical modeling and control of a tilt-rotor aircraft, Aerosp. Sci. Technol. (2015), http://dx.doi.org/10.1016/j.ast.2015.10.012

Download English Version:

https://daneshyari.com/en/article/8058788

Download Persian Version:

https://daneshyari.com/article/8058788

Daneshyari.com