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The delayed feedback stabilization of rigid spacecraft attitude dynamics in the presence of an unknown 
time-varying delay in the measurement is addressed. The attitude representation is parameterized using 
minimal attitude coordinates. The time-varying delay and its derivative are assumed to be bounded. 
By employing a linear state feedback controller via a Lyapunov–Krasovskii functional, a general delay-
dependent stability condition is characterized for the closed-loop parameterized system in terms of a 
linear matrix inequality (LMI) whose solution gives the suitable controller gains. An estimate of the 
region of attraction of the controlled system is also obtained, inside which the asymptotic stability of 
parameterized system is guaranteed.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Feedback stabilization of rigid body attitude dynamics is an 
important control problem, see e.g. [1–5], with a wide range of ap-
plications such as spacecraft attitude maneuvers [6,7], underwater 
vehicles [8], and robotic manipulators [9]. The attitude representa-
tion depends on the choice of attitude parameters used to repre-
sent the orientation of a rigid body relative to an inertial frame 
see, e.g. [10–12]. Several control laws have been developed for 
the control of rigid body attitude dynamics. In [13,14], geomet-
ric controllers are designed on SO(3), which is the set of special 
orthogonal matrices, in order to track attitude and angular velocity 
commands while guaranteeing almost global asymptotic stability. 
In [2] an optimal controller is used, based on minimal attitude co-
ordinates, to minimize a quadratic cost function for a dynamical 
system. Tracking control of a rigid asymmetric spacecraft is ad-
dressed in [7] by using a Hamiltonian–Jacobi formulation.

On the other hand, in several practical applications, there is 
an unavoidable time delay within the control system due to de-
lay in measurements or actuators. Controlled systems designed 
based on feedback schemes are usually robust to a small amount 
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of time delay. However, if the time delay increases due to the 
failure of system components or external sources, then the effect 
of this large time delay on the undesirable behavior of the con-
trolled attitude motion is notable and may lead the non-delayed-
based controlled system to chatter or produce oscillatory motion 
[15,16]. However, to the authors’ knowledge, there are few stud-
ies on delayed feedback control of attitude dynamics [15,17–22]. 
In [17] a nonlinear robust controller is implemented without an-
gular velocity measurements in the presence of a constant time 
delay in the control signal. The closed-loop system is shown to be 
stable for a norm bounded nonlinear uncertainty in the attitude 
dynamics. In [15], a velocity free output-based controller for at-
titude regulation of a rigid spacecraft considering the effects of a 
known time delay in the system is investigated. Sufficient condi-
tions for attitude stabilization of the spacecraft are also obtained 
based on previously established controllers for manipulators. How-
ever, the asymptotic stability of system is only guaranteed for a 
sufficiently small time delay, while only a small estimate of the re-
gion of attraction was obtained. This conservatism has been fairly 
addressed in [21] by employing a linear state feedback controller 
for the attitude motion with an unknown time delay, which has 
a known upper bound in the feedback path using a frequency do-
main approach. A complete type Lyapunov–Krasovskii functional is 
constructed to ensure the robust stability of the linear controller 
and an estimate of the region of attraction is obtained.

In this paper, the delayed feedback control of rigid spacecraft 
attitude dynamics is studied. Kinematic differential equations of 
the spacecraft are modeled using minimal attitude coordinates that 
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can include well-known attitude parameters such as Euler angles, 
classical Rodriguez parameters (CRPs), modified Rodriguez param-
eters (MRPs), and exponential coordinates. We assume that there 
is an unknown time varying delay in the measurement (as op-
posed to actuator delay [18,19]) with known upper bounds for 
both time delay and its rate. Unlike in [21], the controller gain 
matrices for the linear delayed feedback control law are obtained 
using a Lyapunov–Krasovskii functional in terms of a linear ma-
trix inequality (LMI) which guarantees local asymptotic stability of 
the parameterized system. To cope with the nonlinear term in the 
dynamical model, we assume that the nonlinearities satisfy a non-
linear growth condition. Furthermore, an estimate of the region of 
attraction of the system is also obtained. Finally, a set of simula-
tions is performed for a given set of spacecraft parameters.

This paper is organized as follows: In Section 2, we present the 
attitude kinematics and dynamics model. Section 3 presents the 
delayed feedback controller design, while an estimate of the region 
of the attraction of the system is obtained in Section 4. Numerical 
simulation results are shown in Section 5, and Section 6 concludes 
the paper.

2. Spacecraft attitude dynamics

In this section, we introduce some preliminary concepts of the 
minimal attitude parameterization ξ ∈ R

3, and then introduce the 
kinematic and kinetic differential equations of rigid spacecraft. Two 
coordinate frames in the three-dimensional Euclidean space are 
employed. N defines the inertial coordinate frame and B defines 
the body-fixed coordinate frame. The spacecraft is modeled as a 
rigid body. In addition, we suppose that there are three actua-
tors acting along orthogonal axes in the frame B. In general, the 
equations of motion obtained by using the minimal set of attitude 
coordinates ξ ∈ R

3 can be expressed as

ξ̇ (t) = 1

β
(G(ξ(t)) + I3)ω(t), (1a)

J ω̇(t) = −ω(t)× Jω(t) + u(t), (1b)

where G : R3 → R
3×3 is a nonlinear function of ξ , β is a constant 

scalar, which is chosen according to the choice of attitude coor-
dinates, ω(t) ∈ R

3 represents the angular velocity of the system 
described in B relative to N , J is the known 3 × 3 constant pos-
itive definite inertia matrix of spacecraft, u(t) ∈ R

3 is the control 
torque input, I3 ∈ R

3×3 is the identity matrix, and (·)× is defined 
as

ω× =
⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

⎤
⎦ . (2)

Equation (1a) is the kinematic differential equation, which can 
be considered as Euler angles, CRPs, MRPs, or exponential co-
ordinates. Equation (1a) is also analogous to Poisson’s equation 
Ċ(t) = −ω(t)×C(t) where C(t) ∈ SO(3) is the direction cosine ma-
trix that describes the attitude of spacecraft from N to B and 
SO(3) is the set of all direction cosine matrices. Equation (1b) rep-
resents the Euler’s rotational equations of motion.

Let the state variable x(t) be defined as x(t) = [xT
1(t), x

T
2(t)]T =

[ξT(t), (1/β)ωT(t)]T ∈ R
6. Eq. (1) can be written as

ẋ(t) = Ax(t) + Bu(t) + f (x(t)), (3)

where

A =
[

03×3 I3
03×3 03×3

]
∈R

6×6, B =
[

03×3

(1/β) J−1

]
∈ R

6×3,

f (x(t)) =
[

f1(x(t))
f2(x(t))

]
=

[
G(x1(t))x2(t)

−β J−1x2(t)× J x2(t)

]
∈R

6. (4)

The equilibrium subspace of the attitude motion is obtained 
as the set E = {(x1, x2)| x1 ∈ R

3, x2 = 0}. The origin of the pa-
rameterized system, i.e., x1 = x2 = 0 is considered as the desired 
equilibrium point of the system. We seek to design a controller for 
the attitude dynamics in the presence of time delay in the mea-
surement such that the origin is asymptotically stable.

Any set of minimal attitude parameterizations contains at least 
one geometrical orientation where the attitude is singular, see e.g. 
[4,11,12]. For example, MRPs have a singularity after one com-
plete revolution. A singularity-free representation can be obtained 
if shadow set switching, which is an alternate set obtained from 
the projection of the other Euler parameters set, is performed [4]. 
However, switching is not employed in this study due to additional 
difficulties (e.g. chattering) resulting from discontinuous control in 
the presence of time delay. In addition, the exponential coordi-
nates, which is a local diffeomorphism (non-singular) at the iden-
tity [23,24] and is obtained from the exponential map contains an 
ambiguity when the spacecraft rotates by � = π rad [25], where 
� is the principal rotation angle with the corresponding principal 
rotation axis ê.

Regarding the nonlinear vector f (x), we have the following 
lemma:

Lemma 1. The nonlinear function f (x) defined in Eq. (3) satisfies f (0) =
0 and can be rewritten as f (x) = F (x)x, where F (x) is a smooth function 
and is obtained as

F (x) =
[

03×3 G(x1)

03×3 −β J−1x×
2 J

]
∈R

6×6. (5)

Denote the induced 2-norm (see, i.e., [26]) of F (x) by ‖F (x)‖2 = γ (x), 
where γ (x) is a positive real-valued function. We consider the neighbor-
hood N ⊂ R

6 of the origin such that N = {x ∈ R
6 : ‖x‖ ≤ k}, where 

k > 0 is a known constant and the vector norm ‖.‖ represents the Eu-
clidean norm ‖.‖2 . Therefore f (x) satisfies a bounded growth condition 
in R6 such that ‖ f (x)‖ ≤ γ (x) ‖x‖ ≤ γ (k)‖x‖. In addition, there exists 
a positive constant γmax such that 0 ≤ γ (k) ≤ γmax.

The proof of this lemma will be discussed in Section 4.

3. Delayed feedback controller design

The objective of controller design is to stabilize the parameter-
ized spacecraft model of Eq. (3) such that all the angular velocities 
and attitude parameters go to zero as t → ∞ in some region of the 
domain R6 that contains the origin in the presence of an unknown 
time-varying delay in the feedback path, i.e., lim

t→∞{‖x(t)‖2} = 0. 
Thus, we design a linear controller for the nonlinear model of 
Eq. (3) by using the Lyapunov–Krasovskii method in conjunction 
with a LMI such that the local asymptotic stability of the solution 
is fulfilled. We assume that there is an unknown continuous time-
varying time delay function τ (t) ∈ R in the feedback loop such 
that

0 ≤ τ (t) ≤ τmax, τ̇ (t) ≤ d < 1, ∀t ≥ 0, (6)

where τmax and d are positive constant scalars. Thus, all the mea-
sured signals that go to the controller are driven by the time delay. 
In addition, there are no control torque constraints.

3.1. Preliminary results

According to the above discussion, the linear state feedback 
control torque can be chosen as

u(t) = J [βK1ξ(t − τ (t)) + K2ω(t − τ (t))] = K xτ , (7)
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