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In this paper, an adjoint-based error estimation and mesh adaptation framework is developed for the 
compressible inviscid flows. The algorithm employs the Finite Calculus (FIC) scheme for the numerical 
solution of the flow and discrete adjoint equations in the context of the Galerkin finite element 
method (FEM) on triangular grids. The FIC scheme treats the instabilities normally generated in the 
numerical solution of the fluid equations through adding two stabilization terms, called streamline 
term and transverse term, to the original central-based discretized formulation. The non-linear system 
of equations resulting from the flow problem is solved implicitly using a damped Newton’s method 
accompanied with the exact Jacobian matrix. A defect corrected scheme is implemented to iteratively 
solve the linear system of equations related to the adjoint problem benefiting from the transpose of 
the Jacobian matrix. At each iteration, the linear systems of equations resulting from the fluid and 
adjoint problems are solved using a preconditioned GMRES method. Having calculated the error of a 
specified output functional locally, an h-refinement methodology based on the element subdivision is 
performed to refine the candidate elements. The quality of the numerical results proves the capability of 
the presented approach for the adjoint-based error estimation and mesh adaptation problems in different 
flow regimes.

© 2015 Published by Elsevier Masson SAS.

1. Introduction

Adaptive mesh refinement (AMR) is one of the most efficient 
means for reducing the overall computational cost in the numer-
ical solution of engineering fluid problems modeled by the com-
pressible Euler and Navier–Stokes equations [1–4]. The basic idea 
behind AMR is the control of the mesh resolution by generating an 
appropriate fine mesh near the zones where the solution error is 
high and assigning a coarse mesh to the rest of the domain. These 
techniques are able to improve the accuracy of the flow solution 
around the high-error zones such as boundary layers, stagnation 
points and shock waves. This effect of AMR is more remarkable 
when the numerical solution of the fluid flow is to be employed 
in an optimization problem [5] where an appropriate evaluation of 
a practical output function such as the lift and drag coefficients 
becomes important.

The main components of any AMR technique are a reliable er-
ror estimator/indicator and a mesh refinement methodology. The 
error estimator/indicator introduces areas from the current mesh 
where refinement is needed whereas the enhancement of the cur-
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rent mesh in these areas through adding new elements is the 
task of the mesh refinement methodology. Based on the so-called
feature-based methods, one can consider the flow gradients [4,6]
or flow curvatures [3,7,8] as the error indicator for predicting the 
areas where the refinement is needed. In these areas, the fluid flow 
mostly has some complex features such as shock waves, boundary 
layers and stagnation points. Although this family of error indica-
tors can predict the flow features accurately, it does not necessarily 
provide an efficient estimation of the practical engineering outputs 
(such as lift and drag) used widely during the design optimization 
process.

In order to resolve this drawback, another family of error esti-
mators/indicators, called output-based methods, has been devel-
oped recently employing the sensitivities of a specified output 
functional with respect to the flow solution where these sensi-
tivities are predicted through the implementation of the adjoint 
variables. The general idea of these methods is to estimate the 
global error of the output functional as an inner product of the 
flow residuals and the adjoint variables a posteriori. For this end, 
two sets of problems, namely the flow problem and the adjoint 
problem, need to be solved on the current coarse mesh. The nu-
merical solution of the flow equations provides the flow variables, 
whereas the adjoint variables are evaluated through the numerical 
solution of the adjoint equations.
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Besides the application of output-based methods for estimating 
the global error, they can be considered as a local error indica-
tor to find the zones where the functional error is more than 
a desirable tolerance. The application of the output-based error 
estimation and mesh adaptation methods using adjoint variables 
in the context of finite volume is studied by Pierce and Giles 
[9] for the Poisson equation as well as the nonlinear quasi-one-
dimensional Euler equations. At the following, Pierce and Giles [10]
investigated this approach for two-dimensional inviscid shocked 
problems. The extension of this method for compressible two-
dimensional inviscid and viscous flows is delivered by Venditti 
and Darmofal [11,12]. Park [13] employed this approach for in-
compressible and compressible three-dimensional Euler problems 
whereas Nemec et al. [14] demonstrated this for complex geome-
tries. In the context of the finite element discretization method, 
Becker and Rannacher [15] developed adjoint-based error estima-
tion and mesh adaptation for viscous fluid flow, chemically reactive 
flow, elasto-plasticity and radiative transfer problems. At the fol-
lowing, Rannacher [16] studied this approach for incompressible 
viscous flows whereas Giles et al. [17] demonstrated the capability 
of this technique for drag and lift coefficients of a body immersed 
into a incompressible viscous flow. Based on the recent develop-
ments of the discontinuous Galerkin finite element method in fluid 
problems, several implementations of the adjoint-based error es-
timation are presented for inviscid [18,19] and turbulent viscous 
[20] flows. A comprehensive review of adjoint-based error estima-
tion and mesh refinement methods in computational fluid dynam-
ics for laminar and Reynolds-averaged Navier–Stokes applications 
is carried out by Fidkowski and Darmofal [21].

The adjoint equations are originally developed by Pironneau 
[22] and Jameson [23] for computation of derivatives of an output 
functional to be employed for gradient-based optimization meth-
ods. In order to solve the adjoint equations two different proce-
dures, namely the continuous formulation and the discrete for-
mulation, have been developed by researchers. In the continuous 
formulation the continuous form of the governing flow equations 
is first differentiated and then discretized, whereas the discrete 
formulation directly differentiates the discretized form of the gov-
erning equations. Although the continuous adjoint formulation has 
the advantage of less memory requirements, the implementation 
of the discrete formulation has been increased recently due to the 
simplicity of implementation and the unique capability of provid-
ing the exact discrete sensitivities. This simplicity comes from the 
fact that the transpose of the global Jacobian matrix, already cal-
culated for the implicit solution of the flow equation, is utilized 
directly for the solution of the linear system of equations which 
arise from the discrete adjoint formulation. On the other hand, the 
treatment of the boundary conditions is quite straightforward in 
the case of the discrete formulation. A comprehensive comparison 
of the continuous and discrete adjoint formulations is presented 
in [24].

An important property related to the adjoint-based error es-
timation is adjoint consistency which ensures that the discrete 
adjoint problem is a consistent discretization of the continuous 
one. In the error estimation problems, an adjoint inconsistent dis-
cretization can lead to unsmooth or oscillatory adjoint solutions 
with discontinuity between elements that delivers adaptation in 
unnecessary areas leading to suboptimal convergence rate of func-
tional estimates [25]. In particular, for the discretizations based on 
the high-order elements, enforcing adjoint consistency is essential 
for obtaining superconvergent functional estimates [26,27]. There 
has been a significant interest in studying the adjoint consistency 
in the context of finite difference method [28], stabilized continu-
ous finite element method [27,29–33] and discontinuous Galerkin 
finite element method [25,34,35].

Regarding any central-based discretized formulation employed 
for the flow equations, it is a well established fact that the addition 
of stabilization terms to the original system of equations resulting 
from the discretization of the flow problem is essential to avoid 
the occurrence of numerical instabilities [36,37]. Within the family 
of the stabilization techniques, the so-called Finite Calculus (FIC) 
method has been successfully implemented for the stabilization of 
advective–diffusive transport and incompressible fluid flow prob-
lems [38–43]. Recently, a FIC-based stabilized formulation for the 
numerical solution of the compressible Euler and Navier–Stokes 
equations has been proposed in the context of Galerkin FEM by 
Kouhi and Oñate [44,45]. Since the systems of equations obtained 
from both the flow and the adjoint problems contain the same 
eigenvalues, the stabilization techniques developed for the flow 
equations can be implemented for solving the adjoint problem as 
well.

In this article, we extend the implementation of the FIC-FEM 
stabilized formulation presented in [44] to develop an adjoint-
based error estimation and mesh adaptation framework for com-
pressible inviscid flows. The system of equations obtained from 
the discretization of the flow problem is solved implicitly using a 
damped Newton’s method benefiting from the exact Jacobian ma-
trix proposed in [45]. At each iteration step, the inherent linear 
system resulting from the flow equations is solved with a pre-
conditioned GMRES method. The transpose of the Jacobian matrix, 
already constructed from the discretized flow equations contain-
ing the FIC-based stabilization terms, is employed for the solution 
of the adjoint equations. In the paper, the adjoint consistency of 
the proposed stabilized method is investigated through checking 
smoothness and continuity of the adjoint solutions obtained for 
the presented examples.

AMR is performed here by using the local contributions of 
the functional error in conjunction with the classical h-refinement 
methodology, where each candidate element is divided into four 
by dividing each edge of the element into two. In order to 
demonstrate the capability of the FIC-FEM stabilized formulation 
in output-based error estimation problems, several examples are 
presented. By studying the quality of the results, it is found that 
the presented stabilized formulation provides enough stability for 
the numerical solution of the adjoint equations yielding an accu-
rate estimation of the functional error during the AMR process.

The layout of the paper is the following: In Section 2 the 
compressible Euler equations along with the FIC-FEM stabilized 
formulation are described. Section 3 presents the derivation of 
the output-based error estimation and adaptive mesh refinement 
method using adjoint variables. The solution strategies for the flow 
and adjoint equations are explained in Section 4. The numerical re-
sults corresponding to the proposed error estimation and mesh re-
finement strategy for different output functional in subsonic, tran-
sonic and supersonic flow regimes are shown in Section 5. Finally, 
conclusions and general remarks are summarized in Section 6.

2. Flow problem formulation

2.1. Governing equations

The two-dimensional (2D) compressible Euler equations, in-
cluding the mass balance, momentum and energy equations, are 
considered in this work and can be written in the following con-
servative form

∂U

∂t
+ ∂Fi

∂xi
= 0 for i = 1,2 (1)

where U and F are the vectors of conservative variables and invis-
cid fluxes, respectively, which can be expressed as
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