
Aerospace Science and Technology 46 (2015) 459–470

Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

Guaranteed cost robust weighted measurement fusion steady-state 

Kalman predictors with uncertain noise variances

Yang Chunshan a,b, Yang Zhibo a, Deng Zili a,∗
a Department of Automation, Heilongjiang University, Harbin, 150080, China
b Heilongjiang College of Business and Technology, Harbin, 150025, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 May 2015
Received in revised form 28 August 2015
Accepted 31 August 2015
Available online 4 September 2015

Keywords:
Multisensor system
Uncertain noise variance
Weighted measurement fusion
Minimax robust Kalman predictor
Guaranteed cost robustness
Lyapunov equation approach

Two classes of guaranteed cost robust weighted measurement fusion (WMF) one-step and multi-step 
Kalman predictors are presented by the Lyapunov equation approach for multisensor system with 
uncertain noise variances based on the minimax robust estimation principle. One class is to construct 
a maximal perturbation region of uncertain noise variances such that for all admissible perturbations in 
this region, the deviations of its actual accuracies with respect to the robust accuracy are guaranteed 
to remain within the prescribed range, and the maximal lower bound and minimal upper bound of 
accuracy deviations are given. The other class is to find minimal upper bound and maximal lower bound 
of accuracy deviations under given perturbation region of uncertain noise variances. The general and 
unified concept of guaranteed cost robustness is presented. The proof of the guaranteed cost robustness 
is presented by the Lyapunov equation approach. A simulation example shows the correctness and 
effectiveness of the proposed results.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Multisensor information fusion has received great attention in 
recent years, and it has been applied to many fields including both 
military and nonmilitary applications such as target tracking, guid-
ance, remote sensing, signal processing, GPS positioning, robotics, 
unmanned aerial vehicle (UAV) [1]. There exist two methodolo-
gies of information fusion based on Kalman filtering: the state 
fusion and measurement fusion [2,3]. The former combines the lo-
cal state estimators to give a global optimal or suboptimal fused 
state estimate [4,5]. The latter can be classified as centralized mea-
surement fusion and weighted measurement fusion, where the 
centralized measurement fusion has global optimality, but its dis-
advantage is to require a large computation and communication 
burden, while the weighted measurement fusion can give a global 
optimal fused state estimate by weighting the local measurement 
data, and only less computation burden is required. In order to 
compress the measurements of multisensor, based on the weighted 
least squares (WLS) approach, two optimal weighted measurement 
fusion (WMF) algorithms have been presented in [6,7].
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Kalman filtering is a basic tool of multisensor information fu-
sion. The optimal Kalman filtering requires to know the system 
model exactly. When there exist model reduction, parametric per-
turbations and unmodeled dynamics in the system model, an in-
exact model will degrade the filter performance, and may cause 
the filter to diverge. This has motivated many studies about robust 
Kalman filter (RKF) [8–15] and information fusion RKF [16–22] for 
systems with uncertainties of model parameters and/or noise vari-
ances. The so-called robust Kalman filter [8] is a filter such that 
for all admissible uncertainties, its actual filtering error variances 
are guaranteed to have a minimal upper bound. Up to now, many 
literatures of RKF focused on the systems with the model parame-
ter uncertainties, the algebraic Riccati equations approach [8,9] and 
linear matrix inequality (LMI) approach [8,10] were used to solve 
this problem respectively. These researches on RKF have the lim-
itations of assuming the uncertain model parameters but known 
noise variances, and only the maximal lower bound of accuracy de-
viations were given. The guaranteed cost robust Kalman filters for 
uncertain linear or nonlinear systems were presented in [11–13], 
where only the maximal lower bound of accuracy deviation were 
given; Using the game theory, based on the parameterization of 
the perturbations of noise variances, a guaranteed cost minimax 
RKF was presented for single sensor descriptor and non-descriptor 
systems with uncertain noise variances in the sense that there ex-
ists a maximal perturbation region of uncertain noise variances, 
such that for all perturbations in this region, the actual filtering 
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accuracy deviations are guaranteed to be within the prescribed 
range [14,15]. Their limitation is only that the upper bound of the 
accuracy deviations is guaranteed. Recently, for multisensor sys-
tems with uncertain noise variances, applying the minimax robust 
estimation principle, based on the worst-case conservative system 
with the conservative upper bounds of noise variances, a unified 
weighted fusion minimax RKF theory was presented in [17–19], in 
which a Lyapunov equation approach was presented to prove the 
robustness of the proposed RKF, and the concepts of the actual ac-
curacy and robust accuracy were proposed, and only the maximal 
lower bounds of accuracy deviations were given. The main differ-
ence between references [17] and [18] is that they were based 
on the different Lyapunov equations. Compared with [17], in [19], 
the augmented state approach was applied, so that the smoothing 
problem was converted into the filtering problem [17]. The multi-
sensor system with uncertain cross-covariances of local estimation 
errors was considered in [20], while the multisensor system with 
uncertain noise variances was considered in [17–19]. So far, the 
general guaranteed cost robust information fusion filtering prob-
lem is not solved completely.

In this paper, the general and unified concept of guaranteed 
cost robustness is presented, which gives both the maximal lower 
bound and minimal upper bound of the accuracy deviations. 
Moreover, we present the two classes of guaranteed cost robust 
weighted measurement fusion (WMF) Kalman predictors for mul-
tisensor systems with uncertain noise variances. One class is to 
construct a maximal perturbation region of uncertain noise vari-
ances, for all admissible perturbations in this region, the accuracy 
deviations are guaranteed to be within the prescribed range, and 
both the minimal upper and maximal lower bound of accuracy 
deviations are given. The other class is that given the perturba-
tion region of uncertain noise variances, to find the maximal lower 
bound and minimal upper bound of accuracy deviations over this 
region. Using the parameterization representation of the noise vari-
ance perturbations, the problem is converted into the nonlinear or 
linear program problem, which can be solved by the Lagrange mul-
tiplier method or the linear program (LP) method respectively. The 
proof of the guaranteed cost robustness is presented by the Lya-
punov equation approach, which is different from that by the game 
theory in [14,15], and is different from the LMI approach and the 
algebraic Riccati equations approach [8].

This paper is organized as follows: the problem formulation is 
given in Section 2. Two classes of robust WMF guaranteed Kalman 
predictors are presented in Section 3. In Section 4, a simulation ex-
ample is given to illustrate the correctness of the proposed results. 
The conclusions are presented in Section 5.

Notation: Rn denotes the n-dimensional Euclidean space, Rn×n

is the set of n × n matrix, tr(·) denotes the trace of a matrix, the 
superscript “T” denotes the transpose, diag(·) denotes the diagonal 
matrix.

2. Problem formulation

Consider the multisensor time-invariant system with uncertain 
noise variances.

x(t + 1) = Φx(t) + Γ w(t) (1)

yi(t) = Hix(t) + vi(t), i = 1, · · · , L (2)

where x(t) ∈ Rn is the state to be estimated, yi(t) ∈ Rmi and 
vi(t) ∈ Rmi are the measurement and measurement noise of the ith 
subsystem, w(t) ∈ Rl is the input noise, Φ , Γ and Hi are known 
matrices with appropriate dimensions. L is the number of sensors.

Assumption 1. w(t) ∈ Rl and vi(t) ∈ Rmi are mutually uncorrelated 
white noises with zero means and uncertain actual variances Q̄

and R̄ i , respectively, and Q and Ri being known conservative up-
per bounds of Q̄ and R̄ i , respectively, i.e.,

Q̄ ≤ Q , R̄ i ≤ Ri (3)

This means that

�Q = Q − Q̄ , �Q ≥ 0 (4)

�Ri = Ri − R̄ i, �Ri ≥ 0, i = 1, · · · , L (5)

Assumption 2. The uncertain noise variance perturbations �Q and 
�Ri can be parameterized as

�Q =
p∑

i=1

εi Q i (6)

�Ri =
qi∑

j=1

e(i)
j R(i)

j , i = 1, · · · , L (7)

where εi ≥ 0, e(i)
j ≥ 0 are uncertain parametric perturbations, and 

the weighting matrices Q i ≥ 0 and R(i)
j ≥ 0 are known positive 

semi-definite symmetric matrices.

Remark 1. Specially, when �Q and �Ri are diagonal matrices, we 
can select Q i ≥ 0 as a diagonal matrix, whose (i, i) element to be 
1, and the other elements to be zeros. Similarly, we select R(i)

j ≥ 0
as a diagonal matrix with the ( j, j) element to be 1, and the other 
elements to be zeros. Hence we have

�Q = diag(ε1, · · · , εl) =
l∑

i=1

εi Q i,

�Ri = diag
(
e(i)

1 , · · · , e(i)
mi

) =
mi∑
j=1

e(i)
j R(i)

j , i = 1, · · · , L (8)

Introduce the centralized fusion measurement equation

yc(t) = Hcx(t) + vc(t) (9)

yc(t) = [
yT

1(t), · · · , yT
L(t)

]T
(10)

Hc = [
HT

1, · · · , HT
L

]T
(11)

vc(t) = [
vT

1(t), · · · , vT
L(t)

]T
(12)

where the fused measurement noise vc(t) has the conservative and 
actual variance matrix, respectively

Rc = diag(R1, · · · , R L) (13)

R̄c = diag(R̄1, · · · , R̄ L) (14)

Defining mc = m1 + · · ·+mL , and assuming mc ≥ n, then mc ×n
matrix Hc has full-rank decomposition [23–25]

Hc = M H M (15)

with partitioning M as

M = [
MT

1, · · · , MT
L

]T
, Mi ∈ Rmi×m (16)

and with M ∈ Rmc×m having full column rank, and H M ∈ Rm×n

having full raw rank, and m ≤ n. Substituting (15) into (9), we have 
the WLS estimate of H M x(t) is given as [24,25]
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