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The study is concerned with the elastoplastic buckling of thin-walled beams and stiffened plates, 
subjected to in-plane, uniformly distributed, uniaxial and biaxial load. The ruling differential equations 
have been solved analytically by using the Kantorovich technique and the obtained displacement field 
has been employed in a general procedure that, by using the framework derived by the finite element 
method, is able to analyze the elastoplastic buckling behavior of prismatic beams and stiffened plates 
with arbitrary cross-section. The inelastic effect is modeled through a stress–strain law of the Ramberg–
Osgood type, and both the incremental deformation theory and the J2 flow theory are here considered. 
The reliability of the numerical procedure is illustrated for rectangular plates, and the contradicting 
results obtained by using the two plastic theories are discussed in detail. Finally, the performance 
of the method is illustrated through the analysis of a C-section and five different closed section 
columns.

© 2015 Published by Elsevier Masson SAS.

1. Introduction

Due to their relevance in the design of thin structures, the criti-
cal behavior of plates, both flat and stiffened, has been extensively 
studied in the past years, as documented by the number of text 
[1,2] and papers [3,4] on the issue.

More recently, a number of authors have also investigated the 
effect of elastoplastic constitutive models on the prediction of the 
buckling load of thin structures, generally by employing models 
based on both the incremental J2 deformation theory (DT) and 
the J2 flow theory (FT). Starting from the pioneering works of 
– among others – Handelmann and Prager [5], Bijlaard [6] and 
Bleich [7] in the 1950s, different aspects of buckling behavior in 
elastoplastic range have been analyzed, and collected in papers 
dedicated to the analytical investigation of buckling [8] and post-
buckling [9] of simple structures. Some of these works examine 
the causes of the “plastic buckling paradox”, as it was first re-
vealed in a series of theoretical investigations on the buckling of 
a simply supported flat plate of infinite length, through both the 
FT [5] and the DT [6]. A comparison of the results shows that 
“the buckling load obtained from the “more rational” FT model 
always far exceeds the experimental observation, whereas the re-
sults obtained adopting the “simplest”, total strain DT, predict
buckling loads lower than FT model and in any case in closest 
agreement with those obtained experimentally. Moreover, the dif-
ferences between the two models increase as the level of plasticity 
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increases, giving in some cases results with different order of mag-
nitude” [10].

As reported in [8], such aspects drastically affect the behavior
and the load carrying capacity of flat plates subject to uniaxial 
or biaxial in-plane load, regardless of the boundary conditions. 
For instance, Durban and Zuckerman found, for specified compres-
sion/tension ratios, an optimal loading path for the DT that has 
no correspondence in FT. The works of Wang et al., which an-
alyze the elasto-plastic buckling of thin [11] and thick [12] flat 
plates by differential quadrature method, confirm the results ob-
tained in [8] and show that the paradox also involves flat plates 
of different geometry, such as triangular or elliptical, with differ-
ent boundary conditions. A comparison of incremental DT and flow 
rule has been recently proposed in [13], where a new algorithm, 
based on a Generalized Differential Quadrature (GDQ) discretiza-
tion technique to solve the out-of-plane plate equation, has been 
presented.

The aim of this work is to present a new analytical formula-
tion to define the critical behavior of both flat and stiffened plates, 
as well as of thin walled columns with open or closed cross sec-
tions, and characterized by non-linear elastoplastic behavior. To 
this end a systematic procedure based on a finite element algo-
rithm capable of accounting for both local and global phenomena 
has been developed. As they are analytical, the obtained results 
do not depend on the discretization adopted, and reliable solu-
tions can be achieved with the minimum number of elements 
required to represent the structural geometry, with the double ef-
fect of stabilizing the numerical procedure and accelerating the 
computing time required for the eigenvalue and eigenvector anal-
ysis.
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Fig. 1. Geometry and load condition of a rectangular plate.

For validation purposes, the proposed procedure has been ap-
plied to flat plates, and the results compared to the analytical 
and/or numerical solutions available in literature. In such a pre-
liminary analysis particular attention is paid to the evaluation of 
the instantaneous elastic moduli, and to the differences between 
them deriving from the two models adopted. The analysis indi-
cates that the (correct) use of the constant value of Lamè modulus 
G in FT shows, as consequence, an irregular behavior of the corre-
sponding generalized elastoplastic modulus which, when the ratio 
between the in-plane loads is greater than a critical value, in plas-
tic range increases its stiffness, in contrast to what happens to the 
other modulus. Having adopted the secant modulus Gs , the corre-
sponding modulus calculated in the DT does not present the same 
anomaly. Observing that just in correspondence of such critical ra-
tio the buckling path corresponding to the two theories begins to 
diverge, it is possible to assert that the irregular behavior of the 
elastic modulus related to the G-coefficient is a cause, or at least a 
concomitant cause, of the plastic buckling paradox.

Another aspect considered in this work is the adequacy of the 
von Kármán hypothesis in the negligible contribution of second-
order strain terms related to in-plane displacement. In a previ-
ous work devoted to the influence of such terms on the elastic 
buckling of shell and both flat and stiffened plates [14], the au-
thors demonstrate how, when the critical mode involves compa-
rable in-plane and out-of-plane displacement, the omission of the 
non-linear strain terms related to in-plane displacements can con-
siderably overestimate the critical load. If such cases never happen 
for flat plates, for which the von Kármán simplification is thus cor-
rect, it is quite common for stiffened plates and prismatic beams, 
when buckling mode involves torsional, flexo-torsional or global 
flexural buckling displacement. In the present work is – to the 
author’s knowledge for the first time – the influence of such non-
linear terms on the elasto-plastic buckling of stiffened plates is 
presented and discussed.

In order to capture the inelastic effect, the constitutive behav-
ior is here modeled through a stress–strain law of the Ramberg–
Osgood type that, with the basic equations ruling the elastoplas-
tic buckling of Kirchhoff plates subjected to uniaxial or biaxial 
compression and under both the FT and DT hypothesis, are in-
troduced in the following section. Section 3 reports an analytical 
solution based on the Kantorovich technique, and its generaliza-
tion in a FEM-like procedure for the buckling analysis of structures 
ascribable to plates rigidly connected together along their edges. 
The same section includes the numerical procedure necessary to 
solve the eigenproblem associated to the corresponding elastoplas-
tic stiffness matrix. In Section 4 parametric analyses related to a 
single plate with different boundary and load conditions, a simply 
supported open C-section and five different thin-walled closed sec-
tion beams are reported and discussed. The last part of the paper 
contains some conclusive considerations.

2. Governing equations

Consider a rectangular isotropic plate of dimension (a, b) and 
uniform thickness h, schematically represented, together with the 
local reference system adopted in this work, in Fig. 1. The plate 
is subjected to biaxial in-plane compressive load nx = −ξPh and 
ny = −ηPh, with (ξ, η) fixed ratio parameters, such that (ξ = η =
1) describes equibiaxial compression, (ξ = 1, η = 0) uniaxial com-
pression in x direction, and so on. In plane stress conditions the 
constitutive behavior can be defined as follows:⎡
⎣ σ̇x

σ̇y

τ̇xy

⎤
⎦ = E

⎡
⎣ αxx αxy αxz

αxy αyy αyz

αxz αyz αzz

⎤
⎦

⎡
⎣ ε̇x

ε̇y

γ̇xy

⎤
⎦ (1)

where E is the elastic Young modulus and αi j are instantaneous 
moduli depending on the plasticity theory considered to model 
material behavior. Here two plasticity theories are considered, 
namely the incremental, or flow, theory of plasticity, with the 
Prandtl–Reuss constitutive equation:

σ̇i j = 2Gε̇i j + λδi j ε̇kk − 3(G − Gt)
Sij Sklε̇kl

σ 2
e

(2)

and the deformation theory of plasticity with the Hencky constitu-
tive relation:

σ̇i j = 2Gsε̇i j + λsδi j ε̇kk − 3(Gs − Gt)
Sij Sklε̇kl

σ 2
e

(3)

In Eqs. (2) and (3) (G, λ, Gs, λs) are the elastic and the secant Lamè 
coefficients, Gt is the tangent shear modulus, Sij are the stress 
deviator components and σe is the equivalent stress that, for the 
load conditions considered, assumes the value:

σe = P
(
ξ2 − ξη + η2) 1

2 (4)

For both the FT and DT models the instantaneous moduli αi j can 
be expressed in the form:⎡
⎣ αxx αxy αxz

αxy αyy αyz

αxz αyz αzz

⎤
⎦

= 1

ρ

⎡
⎣ c yyczz − c2

yz cxzc yz − cxyczz 0
cxxczz − c2

xz 0
symm cxxc yy − c2

xy

⎤
⎦ (5)

where:
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(
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Ē

)
s2

y

4
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4
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