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This paper considers a formation control problem for a multiple-UAV (unmanned aerial vehicle) system
where each UAV is able to exchange information with other UAVs according to a fixed information graph.
In this paper, each UAV tries to minimize its own performance index which is chosen independently
based on its local information. Because of the UAVs’ different objectives, the formation control problem
is formulated and solved as a differential game problem. Realizing the incapability of the classical Nash
strategy approach in dealing with the distributed information, we propose a novel open-loop Nash
strategy design approach for each UAV to implement in a fully distributed manner through estimating its
terminal state. An illustrative example of a five-UAV formation control problem is solved under different
scenarios.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

A multiple-UAV (unmanned aerial vehicle) system is often char-
acterized by an environment with physical constraints such that
each UAV can only exchange information with neighboring ones.
Because of this constraint, the control design for each UAV uti-
lizing only the information available to it becomes a challenge.
An important application of this system is the multiple-aircraft
(including multi-UAV) formation control problem which is to de-
sign control inputs such that a prescribed formation is formed
among the aircrafts. In recent years, a variety of results on air-
craft formation control have emerged. Some of them are reviewed
as follows. In [21], the decentralized overlapping control was de-
sign to control a group of interconnected UAVs, where a feedback
controller was designed in the expanded space for each UAV and
then converted back to the original space. In [7], the aerodynam-
ics coupling effects of the formation flying system was studied
and the trajectory tracking control and formation keeping con-
trol were combined and designed using linear quadratic regulator
approach. In [10], the high-level formation control problem of or-
ganic air vehicles (OAVs) was considered using receding horizon
control approach. In [22], a unified optimal control approach in-
cluding formation control, trajectory tracking, and obstacle avoid-
ance was proposed for multiple-UAV coordination. In [23], the fuel
optimization of formation initialization problem for spacecraft was
considered and the optimization was convexified and solved as a
semidefinite program. In [11], the attitude synchronization prob-
lem of the spacecraft was considered and the decentralized control
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algorithm was developed based on nonlinear cooperative control
theory. A comprehensive review in larger scope on multi-agent
control systems including recent progress on aircraft formation
control can be found in [6]. Most of the recent results on for-
mation control problem utilize tools such as cooperative control
theory [17,16], optimal control theory [5,2], receding horizon con-
trol [15,4], etc., and all the aircrafts are usually assumed to pur-
sue a common goal of minimizing the total formation errors and
velocity differences among them. However, it is of practical inter-
est to have a more general setting where individual aircrafts can
have their own objectives. For example, one aircraft’s objectives
might be chosen based on its locally measured formation errors
and velocity differences. Therefore, given the aircrafts’ different
objectives, the formation control problem indeed becomes a dif-
ferential game problem [9]. However, only a few research works
have been done in this area. In [8], the formation control prob-
lem was formulated as a noncooperative differential game and the
receding horizon Nash equilibrium was solved. In [18], the con-
sensus problem as a special case of formation control problem
was formulated as a cooperative differential game and the Nash
bargain solution among the Pareto-efficient solutions was found
using linear matrix inequality (LMI) approach. In this paper, based
on the previous results, we consider the distributed Nash strategy
design approach for multiple-UAV formation control problem. We
will propose a novel approach that enables each UAV to implement
its Nash strategy only based on the information available to it only.

The rest of the paper is organized as follows: The problem
is formulated in Section 2. We derive the classical open-loop
Nash equilibrium in Section 3. The distributed Nash strategy de-
sign approach is provided in Section 4. An illustrative example of
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Fig. 1. UAV model.

a five-UAV formation control problem is solved in Section 5. The
paper is concluded in Section 6.

2. Problem formulation

2.1. UAV model

Since there exist various UAVs that are designed to complete
different real life tasks, it is impossible to have one universal
mathematical dynamic model to describe all the UAVs. This pa-
per only focuses on the high-level formation control design among
a group of UAVs and hence will adopt a representative UAV model
which has been commonly used in many literatures [13,16,22].
We consider a system of N UAVs with the following point-mass
model [13] as shown in Fig. 1:

ẋi = V i cosγi cosχi, (1)

ẏi = V i cosγi sinχi (2)

ḣi = V sinγi (3)

V̇ i = Ti − Di

mi
− g sinγi (4)

γ̇i = L cosΦi − mi g cosγi

mi V i
(5)

χ̇i = Li sinΦi

mi V i cosγi
(6)

for i = 1, . . . , N , where xi is the down-range displacement, yi is
the cross-range displacement, hi is the altitude, V i is the ground
speed which is assumed to be equal to the airspeed in this paper,
γi is the flight path angle, χi is the heading angle, Ti is the engine
thrust, Di is the drag, mi is the UAV mass, g is the acceleration
due to gravity, Li is the lift, and Φi is the banking angle. The three
control inputs of UAV i is the banking angle Φi , lift Li , and engine
thrust Ti .

It is shown in [13] that the highly nonlinear UAV model in (2.1)
can be pre-linearized using feedback linearization to be

ẍi = uxi, ÿi = u yi, ḧi = uhi (7)

where uxi , u yi , and uhi are the virtual acceleration control inputs.
These virtual control inputs and the real control inputs are related
through the following equations

Φi = tan−1
(

u yi cosχi − uxi sinχi

(uhi + g) cosγi − (uxi cosχi + u yi sinχi) sinγi

)
(8)

Li = mi
(uhi + g) cosγi − (uxi cosχi + u yi sinχi) sinγi

cosΦi
(9)

Ti = mi
[
(uhi + g) sinγi + (uxi cosχi + u yi sinχi) cosγi

] + Di

(10)

where tanχi = ẏi/ẋi and sinγi = ḣi/V i . Therefore, after the vir-
tual control inputs are designed based on the linear model (7), the
real control inputs can then be obtained by substituting the virtual
ones into (7). Expressing (7) in terms of state-space representation
yields

żi = Azi + Bui, (11)

pi = C p zi (12)

vi = C v zi (13)

where zi = [pT
i vi]T is the state vector, pi is the position vector,

vi is the velocity vector, ui = [uT
xi uT

yi uT
hi]T is the virtual acceler-

ation control vector,

Ai =
[

0 1
0 0

]
⊗ I3, Bi =

[
0
1

]
⊗ I3,

C p = [ 1 0 ] ⊗ I3, C v = [ 0 1 ] ⊗ I3,

I3 ∈ R
3×3 is the identity matrix, and ⊗ is the Kronecker product.

2.2. Information graph

Suppose that individual UAVs are able to communicate with
each other in a certain pattern to achieve the desired formation.
We define a time-invariant directed information graph G = (V,E)

to describe the information exchange pattern among them. Specif-
ically, node vi∈ V represents UAV i and edge ei j∈ E represents the
directional information transmission from UAV j to UAV i. Several
terminologies from graph theory are introduced as follows.

Definition 1. Node i is globally reachable in graph G if there exists
a sequence of edges directed from vi to v j for all j = 1, . . . , N ,
j �= i.

A globally reachable node is also known as a root node of
a spanning tree on the graph. Based on the definition of globally
reachable node, the connectivity of a graph is defined as follows.

Definition 2. Graph G is connected if there exists at least one glob-
ally reachable node.

In this paper, to achieve the formation requirement, the con-
nectivity of the UAVs on the information graph must be assured.
Hence, we make the following assumption:

Assumption 1. The underlying information graph among the N
UAVs is connected.

A widely used mathematical tool in graph theory is the Lapla-
cian matrix L= [Li j] ∈ R

N×N which is defined as follows:

Li j =
⎧⎨
⎩

−li j if eij∈ E for j �= i
0 if eij /∈ E for j �= i

−∑N
q=1, q �=i liq if j = i,

(14)
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