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a b s t r a c t

Large computer simulators have usually complex and nonlinear input output functions. This

complicated input output relation can be analyzed by global sensitivity analysis; however, this usually

requires massive Monte Carlo simulations. To effectively reduce the number of simulations, statistical

techniques such as Gaussian process emulators can be adopted. The accuracy and reliability of these

emulators strongly depend on the experimental design where suitable evaluation points are selected. In

this paper a new sequential design strategy called hierarchical adaptive design is proposed to obtain an

accurate emulator using the least possible number of simulations. The hierarchical design proposed in

this paper is tested on various standard analytic functions and on a challenging reservoir forecasting

application. Comparisons with standard one-stage designs such as maximin latin hypercube designs

show that the hierarchical adaptive design produces a more accurate emulator with the same number of

computer experiments. Moreover a stopping criterion is proposed that enables to perform the number

of simulations necessary to obtain required approximation accuracy.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In many industrial applications computer models, denoted as
simulators, are used to predict the behavior of complex physical
systems. Such simulators are used for instance in reservoir
engineering applications to predict and improve oil recovery or
in the automobile industry to test engine performance. Inputs of
such simulators are estimated by experts and can be highly
uncertain. Moreover, some of these input parameters need to be
calibrated using observations of the physical system and others
need to be optimized. All these operations usually require
performing a very high number of simulations, and because
simulators usually take long time to run, this problem can become
unpractical.

In mathematical terms, a simulator output can be represented
as a function y ¼ f ðxÞ with x 2 O � Rd, and a simulator run is
defined as evaluating the function f for a particular input
configuration x.

To propagate uncertainty from input x through output y, or to
study the sensitivity of y to variations in x, many evaluations of f

at some scattered dataset X ¼ fx1; . . . ;xng � O are usually per-
formed. In particular, for global sensitivity analysis [1], the
number of required runs can be of the order of several thousands
(see [2]).

To reduce this very high number of direct simulations a
possible approach is to construct a statistical approximation of the
function f from some initial training dataset X1 ¼ fx1; . . . ;xng. A
statistical approximation of f, usually referred to as an emulator
[3] or metamodel [4], provides for an input x�, not belonging to
the training dataset X1, a complete probability distribution of
f ðx�Þ. The most probable value of the distribution of f ðx�Þ is then
the best estimate of f ðx�Þ given the simulation results
ff ðxÞ : x 2 X1g, obtained at the training dataset X1.

In this paper we consider the situation in which there are no
particular engineering restrictions to select the training dataset.
Also the dataset can be freely enlarged in order to produce a better
analysis of the input output relationship.

In experimental design one studies how to choose the best
training dataset to perform a given statistical analysis on the data.
Traditionally experimental designs are a one-stage process [5],
and presuppose a given parametric model of the input output
relation. For nonparametric models the number of necessary
points to obtain a reliable approximation depends on the
complexity of the function under investigation; then multistage
processes referred to as sequential designs, are preferred [4,6–8].

Our final goal is to provide an efficient and reliable method to
compute global sensitivity analysis indices and to propagate
uncertainty from input to output [9]. To this end, following the
lines of our previous work [7], we propose a hierarchical
sequential design where the objective is to obtain a best
approximation of the function f using the least possible number
of simulation runs. Approximations of the function f are obtained
by Gaussian process (GP) regression. Similarly to [9] the obtained
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approximation is then used instead of the simulator to compute
sensitivity indices and to propagate uncertainty.

Note that GP regression is a statistical approximation method
that allows to estimate the full distribution of f at untried input x.
However, information about the full distribution is usually
unreliable, therefore in this work we follow a common practice
to use only the best estimate of f to compute sensitivity indices
and for uncertainty propagation.

The problem of finding the best estimate is then equivalent to
scattered data approximation [10]. However, statistical approx-
imations methods such as GP regression are generally more
flexible and provide more valuable physical interpretation than
their scattered data approximation equivalent such as radial basis
functions or splines [11].

We remark that GP regression methods rely on the choice of the
covariance function (kernel) model. The kernel models are usually
parameterized and obtaining information about these hyperpara-

meters is usually a difficult and computationally expensive task. A
common method for computing hyperparameters is maximum
likelihood estimation (MLE), alternatively they can be integrated
out using Markov Chain Monte Carlo (MCMC) methods in Bayesian
frameworks [12]. Note that obtaining good estimates of hyperpara-
meters can be crucial to provide accurate inferences.

In this work a multistage experimental design is proposed for
GP regression to provide a better estimate of the kernel hyper-
parameters and to finally improve the approximation quality at
minimum cost in terms of simulations. Several improvements of
the hierarchical nonlinear approximation scheme presented in a
previous work [7] are proposed.

In a hierarchical approximation scheme a sequence s1; s2; . . . ; sL

of approximations to an unknown function f : Rd
! R, is

constructed from samples of f taken at scattered locations
X ¼ fx1; . . . ; xmg. The construction of the approximation relies on
a data hierarchy

X1 � X2 � � � � � XL � X (1)

of nested subsets of X, where L denotes the number of levels. Then,
the functions s‘ approximate f at the subsets X‘ of the level
‘;1p‘pL, according to some specific approximation scheme. Note
that the sequence s1; s2; . . . ; sL of approximations to f is from
coarse to fine. Indeed, the coarsest approximation s1 is computed
on the basis of the initial design X1, which includes only very few
data. In contrast, the approximations s‘ at finer levels ‘ contain
gradually more information from their corresponding designs X‘.

As discussed in O’Hagan [3], we call the statistical representation
of f (the GP regression model) an emulator, whether the emulator
mean is our best estimate or approximation of the function f.

At each step of the sequential design we use information about
the emulator to select the next inputs to sample in order to
increase the approximation accuracy.

Following the lines of our previous work [7], the experiment
selection at each iteration is performed by adaptive domain
decomposition of the input space followed by local design in each
subdomain. The adaptive domain decomposition called adaptive

gridding is hierarchical from coarse to fine and its computation is
based on the following observation: the more the function wiggles
the more points are needed to approximate the function. This
information is embedded in the parameters of the covariance
function of the Gaussian emulator (in the so-called correlation
lengths or roughness parameters), which are estimated by
maximum likelihood.

Adaptivity is also used to select in which subdomain points are
to be added. The adaptive criterion is based on a preselected
accuracy level of the approximation. The chosen accuracy level also
affects the stopping criterion of the sequential design. To estimate
the approximation accuracy a measure of the prediction error is

computed in each subdomain using cross validation. This prediction
error is then compared to the selected accuracy level, to decide
whether or not adding a point in a given subdomain. The stopping
criterion is reached when the global prediction error (average
prediction error of all subdomains) is below the accuracy threshold.

A formal description of the proposed hierarchical approxima-
tion is given in the following algorithm scheme:

Algorithm 1 (Hierarchical GP regression). Input: Initial Design X1

with corresponding simulator output values ff ðxÞ : x 2 X1g and a

selected relative accuracy target a.

(1) Construct the initial design X1 and run the simulator at X1 to

obtain the initial data ff ðxÞ : x 2 X1g.
(2) FOR ‘ ¼ 1;2;3; . . . DO

(2a) Build the emulator sl and estimate the approximation accuracy

al.
(2b) IF aloa, EXIT

(2c) Construct the new sites X‘þ1 ¼ X‘ [ Xadd by a two-stage

experimental design: apply global adaptive gridding, followed

by local maximin design.

(2d) Run the simulator at the new design sites Xadd. Obtain design

responses ff ðxÞ : x 2 X‘þ1g.

Output: Design sites XL and responses ff ðxÞ : x 2 XLg, emulator sL

with an estimated approximation accuracy aLoa.

This hierarchical approximation scheme results in a multiresolu-
tion representation of the emulator, from coarse to fine. That is, with
increasing accuracy at each iteration, to obtain a sufficiently accurate
approximation at the finest level after merely a few iterations. This
refinement strategy allows control of the gradually increasing
computational costs for building the hierarchical emulator sequence,
and their increasing approximation accuracy.

A typical application of our method is reservoir forecasting. In
this application usually 10–20 uncertain inputs are considered
and the number of affordable simulations is a few hundreds.

The outline of the paper is as follows. In Section 2, the GP
regression is reviewed. Section 3 describes in detail the new
hierarchical adaptive experimental design (HAED). Finally, Section
4 presents numerical results obtained by applying our method to
two synthetic functions, being regarded as a simulator, and to a
synthetic oil reservoir test case using a commercial fluid flow
simulator.

It is shown that our hierarchical scheme effectively manages to
increase the approximation accuracy. Moreover, for the analyzed
test cases, the sequential design outperforms state of the art
maximin latin hypercube design (LHD) [13,14].

2. GP regression

The construction of the individual approximations s‘; ‘ ¼

1; . . . ; L, in Algorithm 1 is based on GP regression. In this section
the frequentist approach of GP regression, Kriging is reviewed. The
Kriging method was introduced by Matheron [15] in geostatistics,
and then used by Sacks et al. [6] for the design and analysis of
computer experiments. For a Bayesian formulation of GP regres-
sion see Kennedy and O’Hagan [16] or for a machine learning
perspective the recent book of Rasmussen and Williams [12]. Note
also that the type of computer simulators considered in this work
are deterministic, i.e., rerunning the code with the same input x
produces exactly the same outputs y.

Consider the output of a simulator as an unknown determi-
nistic function, say f ðxÞ : Rd

! R. Our objective is to predict the
value of f at some point x, given a design X ¼ fx1; . . . ;xng � Rd, and
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