ARTICLE IN PRESS

Progress in Aerospace Sciences xxx (2017) 1-22

Contents lists available at ScienceDirect

Progress in Aerospace Sciences

journal homepage: www.elsevier.com/locate/paerosci

Review: Modelling chemical kinetics and convective heating in giant planet entries

Philippe Reynier^{a,*}, Giuliano D'Ammando^b, Domenico Bruno^b

^a Ingénierie et Systèmes Avancés, 12 Rue Ariane, 33700 Mérignac, France

^b Istituto di Nanotecnologia, Consiglio Nazionale Delle Ricerche, Via G. Amendola 122, 70125 Bari, Italy

ARTICLE INFO	A B S T R A C T		
Keywords:	A review of the existing chemical kinetics models for H_2/He mixtures and related transport and thermodynamic		
Galileo mission	properties is presented as a pre-requisite towards the development of innovative models based on the state-to-		
Hypersonic flows	state approach. A survey of the available results obtained during the mission preparation and post-flight ana-		
Giant planets	lyses of the Galileo mission has been undertaken and a computational matrix has been derived. Different chemical		
Hydrogen	kinetics schemes for hydrogen/helium mixtures have been applied to numerical simulations of the selected points		
	along the entry trajectory. First, a reacting scheme, based on literature data, has been set up for computing the		
	flow-field around the probe at high altitude and comparisons with existing numerical predictions are performed.		
	Then, a macroscopic model derived from a state-to-state model has been constructed and incorporated into a CFD		
	code. Comparisons with existing numerical results from the literature have been performed as well as cross-check		
	comparisons between the predictions provided by the different models in order to evaluate the potential of		

innovative chemical kinetics models based on the state-to-state approach.

1. Introduction

A review is presented of the literature of hypersonic flows in H_2/He mixtures. Many studies are devoted to understand the behaviour of the Galileo probe during its high speed entry into Jupiter's atmosphere. The lessons learnt, however, have bear on other mission scenarios such as entry into other giant planets (Saturn, Uranus, Neptune) that are listed among the highest-priority science goals for planetary exploration in the decade 2013–2022 [1]. In support of these efforts, strong shock waves have been studied in experimental facilities on ground and many studies have been devoted to their understanding.

A review of the available results obtained during the mission preparation and post-flight analyses has been undertaken to select a computational matrix for the numerical simulations. Preliminary calculations of points along the Galileo entry trajectory have been carried out with state-of-the-art models [2] and comparisons with existing numerical predictions performed [3,4]. As an outcome of the literature review, a new transport model for hydrogen/helium mixtures at high temperature has been integrated in the CFD code TINA [5].

In parallel to the CFD efforts, a state-to-state model for hydrogen/ helium mixtures has been developed and a macroscopic reaction scheme suitable for CFD calculations derived [6]. This macroscopic model has been incorporated into TINA and applied to Galileo entry and the results cross-checked with other numerical data from the literature or obtained with different modelling.

The focus of this study is on models for chemical reaction schemes and transport properties relevant to flow-field calculations of Jovian entries, and their impact on the predictions of species distribution and convective heating. Key issues such as radiation and ablation have not been targeted even if they are driving parameters for sizing planetary probe heat shields for entry into giant planet atmospheres.

The paper is organized as follows: sec. 2 reviews the available literature data obtained from shock tube experiments, flight experiments and from numerical calculations; sec. 3 discusses modelling approaches and input data related to the description of thermodynamic, transport and chemical kinetic phenomena in these flows; sec. 4 describes the computational framework used to perform the calculations presented in sec. 5.

2. Available data

2.1. Shock tube data

Among the first to deal with the chemical kinetics of hydrogen/he-

* Corresponding author.

E-mail addresses: Philippe.Reynier@isa-space.eu (P. Reynier), giuliano.dammando@nanotec.cnr.it (G. D'Ammando), domenico.bruno@cnr.it (D. Bruno).

https://doi.org/10.1016/j.paerosci.2017.11.002

Received 27 June 2017; Received in revised form 28 November 2017; Accepted 30 November 2017 Available online xxxx 0376-0421/© 2017 Elsevier Ltd. All rights reserved.

Please cite this article in press as: P. Reynier, et al., Review: Modelling chemical kinetics and convective heating in giant planet entries, Progress in Aerospace Sciences (2017), https://doi.org/10.1016/j.paerosci.2017.11.002

ARTICLE IN PRESS

Progress in Aerospace Sciences xxx (2017) 1-22

Nomenclature			Tomporatura index can be taken a
		a	Fourilibrium
Symbols		eq ;	Equilibrium
Ă	Constant in Arrhenius formulation of reaction rate constant,	L +	Translational
	cm ³ /mol/s	L W	Vibrational
a_i, b_i, c_i	Blottner coefficients of single species viscosities	V	Vibrational
Alt.	Altitude, <i>km</i>	Acronyms	
b	Temperature exponent in Arrhenius formulation of reaction	ARAD	Analog Resistance Ablation Detector
	rate constant	BL	Boundary layer
B_i	Coefficients for the calculation of the equilibrium constant	CEA	Chemical Equilibrium with Application
E_f/R	Activation temperature in Arrhenius formulation of	CFD	Computational Fluid Dynamics
	reaction rate constant, K	CFL	Courant-Friedrichs-Lewy
k_b	Backward reaction rate constant	CR	Collisional Radiative
k _f	Forward reaction rate constant, <i>cm</i> ³ / <i>mol</i> / <i>s</i>	DSMC	Direct Simulation Monte Carlo
Kea	Equilibrium constant	EAST	Electric Arc Shock Tube
P	Pressure, Pa	ESA	European Space Agency
Q	Heat flux, MW/m^2	ESTEC	European Space Research and Technology Center
R	Perfect gas constant, J/K	NASA	National Aeronautics and Space Administration
R_n	Nose radius, m	NIR	Near InfraRed
s	Curvilinear abscissa, m	NIST	National Institute of Standards and Technology
Sc	Schmidt number	PES	Potential Energy Surface
Т	Temperature, K	QCT	Quasi-Classical Trajectory
T_e	Free electron temperature, K	QSS	Quasi Steady State
V	Velocity, <i>km/s</i>	TPS	Thermal Protection System
			Vibrational Rotational Translational
Greek symbols		VSL	Viscous shock-layer
μ	Shear viscosity, kg/m VUV Vacuum UltraViolet		Vacuum UltraViolet
ρ	Mass density, kg/m^3		

lium mixtures and therefore atmospheric entry into giant planets, Leibowitz [7] performed experiments in an electric arc driven shock tube with H_2/He mixtures, exploring the range of shock velocities from 13 to 20 km/s. Temporal profiles were obtained for H_β lines and continuum emission. The measurements were interpreted with a kinetic scheme including hydrogen dissociation and a two-step excitation-ionisation mechanism for atomic hydrogen ionisation by atom-atom and electron-atom collisions. In particular, excitation by atom collision was found to govern the ionisation induction time, and excitation by electron collision the relaxation to thermal equilibrium between heavy particles and electrons (ionisation relaxation time). Recommended expressions for the rate constants of the atom excitation processes were then obtained that give the best agreement with the measurements [7,8].

Similar experiments were performed in a mixture richer in H_2 with shock speeds from 26 to 46 km/s [9]. Equilibrium electron densities and ionisation relaxation distances were measured from the Stark broadening of H_{β} lines and from holographic interferometry.

These two old experiments still represent a significant benchmark for the validation of theoretical models.

Very recently, new shock tube experiments have been carried out at the Electric Arc Shock Tube (EAST) at NASA Ames Research Center [10]. Shock waves with velocities from 20 to 30 km/s were investigated by measuring temporal profiles of the spectral emission radiance in four spectral ranges from the VUV to the NIR; temporal profiles of electron densities were also obtained from Stark analysis of high-resolution Balmer- α line. Quantitative rebuilding of these experimental data, though, remains difficult [11].

2.2. Flight data

Galileo was an unmanned spacecraft sent by NASA to study the planet Jupiter and its moons. It was launched on October 18, 1989. The Galileo Atmospheric Entry Probe arrived in Jupiter's atmosphere on December 7, 1995. The probe descended through 150 km of the top layers of the atmosphere, it collected 58 min of data on the local weather and only stopped transmitting when ambient pressure exceeded 23 atm.

The Galileo Probe shape was a sphere-cone with 22.2 cm nose radius and 44.86 deg cone-half-angle (Fig. 1). The mass of the atmospheric

Fig. 1. Scheme of Galileo probe [12].

Download English Version:

https://daneshyari.com/en/article/8059084

Download Persian Version:

https://daneshyari.com/article/8059084

Daneshyari.com