ARTICLE IN PRESS

Progress in Aerospace Sciences xxx (2017) 1-39

Contents lists available at ScienceDirect

Progress in Aerospace Sciences

journal homepage: www.elsevier.com/locate/paerosci

A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses

Raul Yondo^{a,*}, Esther Andrés^b, Eusebio Valero^a

^a E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid (UPM), Plaza Cardenal Cisneros 3, 28040 Madrid, Spain ^b Engineering Department, Ingeniera de Sistemas para la Defensa de España S.A. (ISDEFE-INTA) & Universidad Politécnica de Madrid (UPM), Ctra. de Ajalvir Km. 4.5,

28850 Torrejón de Ardoz, Spain

ARTICLE INFO

Keywords: Sampling strategies Surrogate models Aircraft aerodynamics Aerodynamics design Surrogate-based optimization Industrial optimization

ABSTRACT

Full scale aerodynamic wind tunnel testing, numerical simulation of high dimensional (full-order) aerodynamic models or flight testing are some of the fundamental but complex steps in the various design phases of recent civil transport aircrafts. Current aircraft aerodynamic designs have increase in complexity (multidisciplinary, multiobjective or multi-fidelity) and need to address the challenges posed by the nonlinearity of the objective functions and constraints, uncertainty quantification in aerodynamic problems or the restrained computational budgets. With the aim to reduce the computational burden and generate low-cost but accurate models that mimic those full order models at different values of the design variables, Recent progresses have witnessed the introduction, in real-time and many-query analyses, of surrogate-based approaches as rapid and cheaper to simulate models. In this paper, a comprehensive and state-of-the art survey on common surrogate modeling techniques and surrogate-based optimization methods is given, with an emphasis on models selection and validation, dimensionality reduction, sensitivity analyses, constraints handling or infill and stopping criteria. Benefits, drawbacks and comparative discussions in applying those methods are described. Furthermore, the paper familiarizes the readers with surrogate models that have been successfully applied to the general field of fluid dynamics, but not yet in the aerospace industry. Additionally, the review revisits the most popular sampling strategies used in conducting physical and simulation-based experiments in aircraft aerodynamic design. Attractive or smart designs infrequently used in the field and discussions on advanced sampling methodologies are presented, to give a glance on the various efficient possibilities to a priori sample the parameter space. Closing remarks foster on future perspectives, challenges and shortcomings associated with the use of surrogate models by aircraft industrial aerodynamicists, despite their increased interest among the research communities.

1. Introduction

In aircraft aerodynamic design teams, the computational burden linked with the preliminary or conceptual design phases is in general very prodigious and is characterized by high computational costs, high fidelities or sensitivity analyses. Identifying and screening multiple aircraft configurations (cruise/high lift, control surface deflections, etc) and flight conditions (Mach number, angle of attack, etc) in order to analyze the most promising ones require to generate fast and efficient methods. Commonly, high dimensional aerodynamic design models -HDAMs (discretization in more than 3 spatial dimensions), also know as full order aerodynamic models (FOAMs), require time consuming and computationally expensive simulations or physical experiments to evaluate the complex objective functions and constraints for analysis and optimization. Solving aerodynamic problems generally require real-time or many-query settings; a real-time analysis consists of instantaneous solutions under restricted resources and give the possibility to respond to evolving conditions as the phenomenon unfold (e.g. in routine analysis or control and nondestructive evaluation/parameter estimation). A manyquery scenario arise when the FOAM is solved repeatedly for various configurations and design variables (e.g. in design optimization, optimal control or uncertainty analysis). As an example, while designing a new aircraft, a CFD (Computational Fluid Dynamics) campaign provides the aerodynamicists with flow solutions from only few selected flight conditions because it will be time-consuming and costly to evaluate all of them. To circumvent these burdens and enable a wider exploration of the

* Corresponding author.

E-mail addresses: yondo.raul@upm.es (R. Yondo), esther.andres@upm.es, eandres@isdefe.es (E. Andrés), eusebio.valero@upm.es (E. Valero). *URL*: http://www.airup-itn.eu

https://doi.org/10.1016/j.paerosci.2017.11.003

Received 30 March 2017; Received in revised form 29 November 2017; Accepted 30 November 2017 Available online xxxx 0376-0421/© 2017 Elsevier Ltd. All rights reserved.

Please cite this article in press as: R. Yondo, et al., A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses, Progress in Aerospace Sciences (2017), https://doi.org/10.1016/j.paerosci.2017.11.003

R. Yondo et al.

ARTICLE IN PRESS

Nomenclature		MDoE	Modern Design of Experiments
		MDO	Multidisciplinary Design Optimization
(L)CVT	(Latinized) Centroidal Voronoi Tesselation	MDS	Multidimensional Scaling
(N)OA	(Nearly) Orthogonal Arrays	MES	Maximum Entropy Sampling
(N)OLH	(Nearly) Orthogonal Latin Hypercube	MFIS	Multifidelity Importance Sampling
AIC	Akaike's Information Criterion	MFM	Multidifelity Model
AMSE	Adjusted Mean Square Error	MLE	Maximum Likelihood
ANN	Artificial Neural Networks	MLP	Multilayers Perceptrons
ANOVA	Analysis Of Variance	MOR	Model Order Reduction
APR	A Priori Model Reduction	MPE	Missing Point Estimation
BIC	Schwarz's Bayesian Information Criterion	NLDR	Nonlinear Dimensionylity Reduction
BK	Blind Kriging	ODE	Ordinary Differential Equations
BPOD	Balanced Proper Orthogonal Decomposition	OFAT or	OVAT One Factor/Variable At a Time
CCD	'Box-Wilson' Central Composite Designs	OK	Ordinary Kriging
CDoE	Classical Design of Experiments	PCA	Principal Component Analysis
CFD	Computation Fluid Dynamics	PDE	Partial Differential Euqations
CPOD	Compact Proper Orthogonal Decomposition	PGD	Proper Generalized Decomposition
DACE	Design and Analysis of Computer Experiments	PI	Probability of Improvement
DEIM	Discrete Empirical Interpolation Method	POD	Proper Orthogonal Decomposition
DFM	Data-Fit Models	PRESS	Prediction Error Sum of Squares
DNS	Direct Numerical Simulations	RAE	Relative Accuracy Error
DoE	Design of Experiments	RANS	Reynolds Navier Stokes Equations
DR	Dimensionality Reduction	RBF(NN)	Radial Basis Neural Network
EDK	External Drift Kriging	REES	Regional Error Measures
EIM	Empirical Interpolation Method	RK	Regression Kriging
EI	Expected Improvement	ROB	Reduced Order Basis
FAST	Fourier Amplitude Sensitivity Test	ROM	Reduced Order Model
FO(A)M	Full Order (Aerodynamic) Model	SB(A)O	Surrogate Based Analysis and Optimization
FT	Flight Test	SCF	Spatial Correlation Function
GEK	Gradient Ehance Kriging	SIAM	Society for Industrial and Applied Mathematics
GNAT	GaussNewton with Approximated Tensors	SK	Simple Kriging
GPOD	Gappy Proper Orthogonal Decomposition	SMMM	Surrogate Model Management Methods
HD(A)M	High Dimensional (Aerodynamic) Design Models	SSA	Stochastic Spectral Approximations
HM	Hybrid Models	SUMO	Surrogate Model
IMSE	Integrated Mean Square Error	SVD	Singular Value Decomposition
ISC	Infill Sampling Criteria	SVM	Support Vector Machines
Isomap	Isometric Mapping	SVR	Support Vector Regression
LCB	Lower Confidence Bounding	TPWL	Trajectory Piecewise Linear Approximation
LDR	Linear Dimensional Reduction	TRMM	Trust-Regions Management Methods
LES	Large Eddies Simulations	UK	Universal Kriging
LHS	Latin Hypercube Sampling	VAM	Variable Accuracy Model
LOO	Leave-One-Out Cross Validation	VCM	Variable Complexity Model
LSM	Least Square Method	VFM	Variable Fidelity Model
MAE	Mean Absolute Error	VRM	Variable Resolution Model
MARS	Multivariate Adaptive Regression Splines	WRMSE	Weighted Root Mean Square Error
MCMC	Markov Chain Monte Carlo Sampling	WTT	Wind Tunnel Test

design space, researchers introduced cheap-to-evaluate models (surrogates models- SUMOs) to accurately and speedily predict the values of the model objectives and constraints at new design points, without a need to necessarily repeat the original expensive physical or simulationbased experiment.

Optimization through the use of surrogates models is called Surrogate-Based Optimization (SBO). Gaining a good insight into SBO requires a knowledge in Design of Experiments (DoE) (spatial distribution of the samples, training set), simulation-based models (e.g. CFD) or physical models (e.g. Wind Tunnel Testing) and optimization. Moreover, SBO frameworks are heavily dependent on the design objectives and constraints. They should quantify for the uncertainties (sensitivity analysis) within the surrogate models, deal with 'noisy' data and pare down the problems posed by the high-dimensionality of the data (dimensionality reduction). A vast number of papers have addressed SBO methods. Popular releases are the ones from Booker et al. [1], Queipo et al. [2], Forrester et al. [3], Forrester and Keane [4], Ahmed et al. [5], Koziel et al. [6], Viana et al. [7] or more recently Leifsson and Koziel [8]. However, it is not clear from the readings if the approaches and frameworks presented in the above-mentioned papers are suitable for aerodynamic analysis and optimization, and could fit the needs of the aircraft industry. Motivated by the lack of a review considering industrial outlooks proper to aircraft aerodynamic design analysis and optimization, the present paper is a broad up-to-date survey that differs from its existing counterparts by the wide range of DoEs and SUMOs methodologies introduced, its aircraft industrial emphasis, recent SBO applications in aircraft aerodynamic design, etc.

The outline of the paper is as followed: Section 2 revisits the classical DoE (CDoE) and the modern DoE (MDoE or Design and Analysis of Computer Experiments (DACE)). Section 3 provides a comprehensive summary on existing surrogate modeling techniques employed in aircraft aerodynamics, including data-fit models (DFM), reduced-order models

Download English Version:

https://daneshyari.com/en/article/8059085

Download Persian Version:

https://daneshyari.com/article/8059085

Daneshyari.com