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a b s t r a c t

Understanding, predicting and supressing the inadvertent aircraft oscillations caused by Aircraft/Rotor-
craft Pilot Couplings (A/RPC) is a challenging problem for designers. These are potential instabilities that
arise from the effort of controlling aircraft with high response actuation systems. The present paper
reviews, updates and discusses desirable practices to be used during the design process for unmasking A/
RPC phenomena. These practices are stemming from the European Commission project ARISTOTEL Air-
craft and Rotorcraft Pilot Couplings – Tools and Techniques for Alleviation and Detection (2010–2013) and are
mainly related to aerodynamic and structural modelling of the aircraft/rotorcraft, pilot modelling and A/
RPC prediction criteria. The paper proposes new methodologies for precluding adverse A/RPCs events
taking into account the aeroelasticity of the structure and pilot biodynamic interaction. It is demon-
strated that high-frequency accelerations due to structural elasticity cause negative effects on pilot
control, since they lead to involuntary body and limb-manipulator system displacements and interfere
with pilot's deliberate control activity (biodynamic interaction) and, finally, worsen handling quality
ratings.
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1. Introduction

Adverse Aircraft/Rotorcraft-Pilot Coupling (A/RPC) have chal-
lenged designers since the first manned flight of the Wright
Brothers over a century ago [81,82]. A/RPCs are unwanted phe-
nomena originating from an anomalous/undesirable discord be-
tween the pilot's intentions and the aircraft's response. Such
phenomena have always been a potential flight safety-critical is-
sue for both fixed and rotary wing aircraft. They may result in
annoying aircraft oscillatory/non-oscillatory instabilities which
degrade the vehicle's flying qualities, increase the structural
strength requirements and sometimes even result in catastrophic
accidents. Until 1995, A/RPC events were perhaps still better
known as pilot induced oscillations (PIO) and pilot assisted oscil-
lations (PAO). PIO1 implies that the pilot inadvertently excites di-
vergent vehicle oscillations by applying control inputs that are in
the wrong direction or have phase lag. PAO2 is the result of in-
voluntary control inputs of the pilot in the loop that may desta-
bilise the aircraft due to inadvertent man–machine couplings.
Today it is agreed that the cause of a particular undesirable A/RPC
is not necessarily nor entirely due to the pilot but it is often ulti-
mately associated with some anomalous aircraft design features.
Throughout this paper, the term “A/RPC” will therefore be used.

“Almost like clockwork PIO becomes an important problem to
solve every 10 to 15 years, usually in association with at least one
highly visible event.” [177].

As first examples, the Wright Brothers' first flights [81,82] were
very challenging to fly because the aircraft was marginally stable
and needed ample pitch control power. As a result, overcontrol in
the pitch attitude and stick-force reversal could occur. Especially in
gusty conditions, it is reported that Wilbur and Orville Wright
were continuously correcting their control input to keep a steady
flight path. Accidents occurred so frequently that, in the Wright
Brothers l908 aircraft, the “Flyer”, 80% of the licensed pilots were
killed. Subsequently the “Flyer” was modified to use trailing edge
ailerons to reduce adverse yaw, and the canard was replaced with
an aft tail to improve stability and stall control. Many of the APCs
recorded in older aircraft (1950s and earlier vintage) were due to
poor stability characteristics (low inherent damping of the short

period or Dutch roll aircraft modes). For rotorcraft, the first re-
corded RPC occurrence concerned the experimental Firestone XR-
9 helicopter in 1945 [83,85]. The novel feature of the XR-9 was a
floating (gimbal) rotorhead design where the rotor hub and blades
were able to pivot in a gimbal motion about the gimballed joint
connecting the rotor to the helicopter. It was this feature that
caused inadequate helicopter control and pilot difficulties. This
made XR-9 “not satisfactory for use by relatively inexperienced and
untrained pilots because of its unstable characteristics” [83].

The first major push to comprehend and eliminate APC came in
the early 1960s. At that time at least three major APC incidents
occurred on four different aircraft: (1) the Bell X-2 Starbuster high
speed research aircraft; (2) the X-15 rocket-powered aircraft;
(3) the Northrop T-38A supersonic jet trainer, and (4) the
McDonnell F-4A Phantom II “Sageburner” supersonic all-weather
fighter known to have broken many altitude and speed records
during the period 1959–1969. The research of that time is best
encapsulated in reference [52]. The Bell X-2 APC incident occurred
in the 1956 [83] and is a classic example of the human limitations
in controlling a vehicle with poor handling qualities. The cause of
the accident was an excessive/adverse roll-pitch–yaw coupling.
The pilot initiated a left turn at a too high Mach number (M¼2.8)
in an attempt to set a new speed record. As the turn progressed,
the angle of attack (AOA) increased and aileron deflection was
applied to limit the increasing bank to the left. The adverse yawing
moment due to aileron deflection exceeded the available direc-
tional restoring moment due to sideslip. Yaw/roll coupling mo-
tions increased in intensity until the critical roll velocity for in-
ertial coupling was exceeded. Violent, uncontrollable motions oc-
curred about all axes approximately 17 s. High positive and ne-
gative accelerations were imposed on the aircraft, which finally
entered an inverted spin. For a more detailed explanation of the
incident the reader is referred to Ref. [84]. The X-15 APC incident
occurred on January 25, 1959 during its first gliding flight ap-
proach and landing. Analysis of the event indicated that the FCS
flown with the pitch-damping system off combined with a high
precision landing task led to the APC. The T-38A APC occurred on
January 26, 1960 during a demonstration flight and it was “as se-
vere as one can get without an actual breakup of the aircraft” [1,50]
(vertical acceleration oscillations that peaked at –10 g and þ8 g).
The event took place at high subsonic speed (Mach number 0.91)
and involved an initial instability due to the coupling between the
flight control system (FCS) and the aircraft which was further
aggravated by the pilot who disengaged the FCS. The F-4 Sage-
burner destructive APC occurred on May 18, 1961 during an at-
tempt to set a high-speed, low-altitude record. During the attempt
a pitch damper failure led to the severe APC that resulted in a
catastrophe.

The second important period of high profile A/RPC events

1 In the past many other terms were used to designate PIO events, e.g. “pilot in
the loop oscillations”, “pilot involved oscillations” and “pilot augmented oscilla-
tions”. The term “pilot induced oscillation” is retained within this report due to its
widespread acceptance.

2 PAO were designated in the past as “pilot out of the loop oscillations”, “pilot
activated oscillations”, “aeroelastic PIO” or “high frequency PIO”. The term “pilot
assisted oscillations” is retained within this report due to its widespread
acceptance.
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