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a b s t r a c t

The computation of apparent material properties for a random heterogeneous material requires the
assumption of a solution field on a finite domain over which the apparent properties are to be computed.
In this paper the assumed solution field is taken to be that defined by the shape functions that underpin
the finite element method and it is shown that the variance of the apparent properties calculated using
the shape functions to define the solution field can be expressed in terms of a variability response
function (VRF) that is independent of the marginal distribution and spectral density function of the
underlying random heterogeneous material property field. The variance of apparent material properties
can be an important consideration in problems where the domain over which the apparent properties
are computed is smaller than the representative volume element and the approach introduced here
provides an efficient means of calculating that variance and performing sensitivity studies with respect
to the characteristics of the material property field. The approach is illustrated using examples involving
heat transfer problems and finite elements with linear and nonlinear shape functions and in one and two
dimensions. Features of the VRF are described, including dependency on shape and scale of the finite
element and the order of the shape functions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the practical analysis of engineering problems using con-
tinuum approaches, apparent, effective, or homogenized material
properties must be computed to apply the governing equations of
continuum mechanics. When an apparent material property is
computed in a given domain from an underlying random field
model for a spatially varying material property the result is a ran-
dom quantity that is no longer spatially variable. For example, ap-
parent elastic modulus or thermal conductivity are random vari-
ables that are spatially constant over the problem domain as op-
posed to the underlying spatially varying random fields. As the
volume of the domain increases, the variance of the apparent
properties decreases until it becomes negligible, at which point one
is said to have reached the representative volume element (RVE).
For many structural and mechanical systems, assumption of an RVE
is appropriate, but for many others residual uncertainty in the ap-
parent properties should be considered. This situation has, to some
extent, been characterized as involving the statistical volume ele-
ment (SVE) [1–3] and addressed using Monte Carlo based finite
element approaches [4–6]. This paper describes a method for

computing the variability of apparent material properties—specifi-
cally the thermal conductivity—using variability response functions
(VRFs) that have the advantage of being analytically rather than
numerically derived and provide a method for computing the var-
iance of the apparent property that is independent of the dis-
tribution and spectrum of the underlying material property field. In
the context of this paper, the VRF formulation is developed by
imposing the shape functions of the finite element formulation on
the problem domain and computing apparent properties based on
equivalence of the finite element characteristic matrices for the
heterogeneous and homogeneous versions of the problem.

One of the challenges present in any approach to computing
apparent properties is that the apparent property obtained de-
pends on the boundary conditions applied to the heterogeneous
version of the problem in obtaining the apparent property [7,8].
Using the shape functions of a finite element formulation does not
remove this boundary condition dependence, but does allow the
obtained apparent properties to be, in a sense, consistent with the
formulation used in further finite element analysis of the problem.
Other approaches commonly used include the imposition of per-
iodic boundary conditions [9].

The VRF approach to uncertainty quantification was developed
in the context of computing the variance of the displacement
response of structural systems with spatially varying, random ma-
terial properties [10–12]. It has since been extended to the problem
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of computing the variance of apparent elastic material properties
for statically determinate, indeterminate, and continuum systems
[8,13,14]. Here, those approaches are combined with the seminal
approach to the stochastic finite element method that computes the
variability of the nodal displacements in a finite element model
based on an underlying stochastic field of material properties [12].

The remainder of the paper is organized as follows: First a
problem statement is given that defines more precisely the
notion of the apparent material property and the residual un-
certainty associated with the apparent property. Next the general
approach to computing VRFs for the apparent material properties
in a finite element context is introduced for the heat conduction
problem. Examples are then given for the linear and quadratic one
dimensional elements and the linear triangular element. Finally,
comments are provided on how this version of assessing the un-
certainty of apparent properties may find a place in a multi-scale
analysis context.

2. Problem statement

Let nΩ ⊂ define a solid body occupied by a material with
properties defined by the spatially varying and random (hetero-
geneous) matrix c x x, n( ) ∈ and subject to Neumann and Di-
richlet boundary conditions on the boundary segments neumannΩ∂
and dirichletΩ∂ respectively. Consider now the case in which this
body, subject to the same boundary conditions, is occupied by a
material with properties defined by the spatially invariant
(homogeneous) matrix c. The definition of an apparent property
depends on choosing c such that

g gx x 1het homϕ ϕ( ( )) = ( ( )) ( )

where xhetϕ ( ) and xhomϕ ( ) are solution fields in the heterogeneous
and homogeneous bodies respectively and g (·) represents a
function of those solution fields that is usually chosen to have
some physical meaning. In elasticity problems the strain energy is
often chosen to act as g (·) so that the energetics of the hetero-
geneous and homogeneous versions of the problem are equivalent.
Other rational choices, however, can be made. For example, in a
heat transfer problem g (·) could be chosen to be the temperature
at a particular point of importance in the problem, and similarly in
an elasticity problem a key displacement could be selected. The
matrix c of apparent material properties is itself stochastic, unless
Ω is a representative volume element (RVE) but not spatially
varying. The primary interest in this paper is computation of the
uncertainty associated with c, when the problem domain is a finite
volume smaller than the RVE. Beyond the fact that the solution c
to Eq. (1) is itself stochastic, that solution depends on the specific
boundary conditions applied in computing xhetϕ ( ) and xhomϕ ( ). This
dependence of apparent material properties on boundary condi-
tions represents a significant challenge to developing consistent
and widely applicable definitions of apparent properties. Most
currently available approaches involve assumption of periodic
boundary conditions or the assumption of a form for the solution
field. In this paper, the second approach is taken, but in a novel
way involving the use of the shape functions associated with finite
elements used to solve practical problems numerically.

In this paper, a stochastic scheme for computing apparent
properties is proposed for the scalar field problem of heat con-
duction in one, two, or three spatial dimensions with a single
material property defining a constitutive matrix that is physically
isotropic and is also statistically homogeneous and isotropic. That
is, the solution field is the temperature tx xϕ ( ) = ( ) and the ma-
terial property is the thermal conductivity c x xλ( ) = ( ). The ran-
domness in the problem can be modeled as x xλ λλ( ) = ( ) * in which

fx x10λ λ( ) = ( + ( )) is a random field composed of a mean value λ0
and a random part f x( ), a mean zero, statistically homogeneous
and isotropic random field characterized by its spectral density

S ,ff
nκ κ( ) ∈ where κ is a vector of wave numbers. For the case of

heat conduction, the constitutive matrix of the homogeneous
problem is λ λλ= * and the goal of this paper is to evaluate the
uncertainty in λ by developing efficient means of computing
var λ[ ]. Specifically, the goal is to develop a variability response
function for var λ[ ] such that

S dvar VRF
2ff

, n∫ κ κ κλ[ ] = ( ) ( )
( )λ

[−∞ ∞]

where VRF κ( )λ is a VRF for the apparent conductivity that is in-
dependent of the distribution and spectrum of f x( ).

3. Finite element based VRFs for apparent conductivity

A finite element is defined by its geometry and the shape
functions used to interpolate the solution field within the element
domain. In this paper the element domain is nΩ ⊂ and the shape
functions are denoted by N NN x x, , m1= [ ( ) … ( )] where m is the
number of nodes the element possesses. In the case of the scalar
field heat transfer problem, m is also the total number of degrees
of freedom in the element. The gradients of the shape functions
are denoted by B, an n�m matrix with components B N xx /ij j i= ∂ ( ) ∂
for the heat transfer problem. The conductivity matrix for the
heterogeneous version of the problem is fx x I10λ λ( ) = ( + ( ))
where I is the n�n identity matrix, and the conductivity matrix of
the homogeneous version of the problem is Iλ λ= .

Given these definitions, and further defining B B BT* = for
compactness of notation, the characteristic matrices of the
homogeneous and heterogeneous versions of the problem can be
defined as

dk B u u 3hom ∫λ= *( ) ( )Ω

f dk B u u u1 . 4het 0 ∫λ= *( )( + ( )) ( )Ω

Except in the case where B* is a constant matrix—corresponding to
linear shape functions—it is not possible to define a single value of
λ using k khet hom= . Therefore a matrix of apparent conductivities
λ such that

B d
B f d

u u
u u u1

5
ij

ij
ij

0 ∫∫
λ λ=

*( )
× *( )( + ( ))

( )Ω
Ω

defines the components of a matrix that contains a set of apparent
material properties.

The mean of ijλ is obtained by

E
B d

E B f d
u u

u u u1
6

ij
ij

ij
0 ∫∫

λ λ[ ] =
*( )

× [ *( )( + ( )) ]
( )Ω

Ω

E
B d

B E f d
u u

u u u1
7

ij
ij

ij
0 ∫∫

λ λ[ ] =
*( )

× *( ) [( + ( ))]
( )Ω

Ω

E 8ij 0λ λ[ ] = ( )

since E f u 0[ ( )] = and B uij*( ) is deterministic. The variance is

E Evar ij ij ij
2 2λ λ λ[ ] = [ ] − [ ] . Calculation of the second moment E ij

2λ[ ],
the remaining quantity needed to calculate the variance, begins
with
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