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a b s t r a c t

A significant amount of problems and applications in stochastic mechanics and engineering involve
multi-dimensional random functions. The probabilistic analysis of these problems is usually computa-
tionally very expensive if a brute-force Monte Carlo method is used. Thus, a technique for the optimal
selection of a moderate number of samples effectively representing the entire space of sample realiza-
tions is of paramount importance. Functional Quantization is a novel technique that has been proven to
provide optimal approximations of random functions using a predetermined number of representative
samples. The methodology is very easy to implement and it has been shown to work effectively for
stationary and non-stationary one-dimensional random functions. This paper discusses the application of
the Functional Quantization approach to the domain of multi-dimensional random functions and the
applicability is demonstrated for the case of a 2D non-Gaussian field and a two-dimensional panel with
uncertain Young modulus under plane stress.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In stochastic engineering problems, the proper consideration of
the input variability is crucial to obtain an accurate and reliable
solution. A large number of these problems involves uncertain
quantities which should be modeled as multi-dimensional random
fields. The use of multi-dimensional random fields gained mo-
mentum due to the continued increase in available computational
resources and nowadays is commonly used in many disciplines.
Several examples can be found in various fields of engineering. For
instance, in structural engineering Christou and Bocchini [1]
modeled the spatial distribution of corrosion over the upper flange
of a steel I-beam as a two dimensional random field. Papadopoulos
and Papadrakakis [2] used two-dimensional uni-variate (2D-1V)
stochastic fields to describe the non-homogeneous characteristics
of initial imperfections in manufactured shells. In geotechnical
engineering Popescu et al. [3] used two-dimensional fields to
model the spatial variability of the soil mechanical characteristics.
Similarly, in naval engineering Teixeira and Guedes Soares [4] used
two-dimensional fields to model the spatial corrosion propagation
in ship-hull plates and computed their collapse strength.

The solution of these engineering problems is often obtained
though simulation-based techniques, which are the most com-
monly used among the procedures available in the literature.
Monte Carlo Simulation (MCS) is still considered the most reliable
and versatile numerical technique for the solution of engineering
problems affected by uncertainty. The drawback of MCS remains
the large computational cost that prevents its use for many ap-
plications. In particular, the number N of deterministic runs which
can be actually performed is limited by the complexity of the
problem at hand, the type of input and the available time and
computational resources. In many cases, this number N is small,
e.g. in the range [ – ]50 1000 , too small for the law of large numbers
to apply. Such sample size may be sufficient for the assessment of
low-order statistics (i.e., mean or standard deviation at most), but
certainly not to capture more information on the probability dis-
tribution. Thus, the result of a plain MCS would not be acceptable
when a model of the entire distribution is sought. In these cases, a
probabilistic technique that can capture in the most effective way
the space of sample realizations of the random function, given a
pre-determined number of samples, should be used.

Multiple techniques have addressed the issue of sampling
random functions more effectively, compared to plain MCS. For
engineering problems the currently most popular method was
presented in [5] and is called “Stochastic Reduced-Order Models”
(SROM). Grigoriu used SROM to find statistics of the state of linear
dynamic systems with random and deterministic properties

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/probengmech

Probabilistic Engineering Mechanics

http://dx.doi.org/10.1016/j.probengmech.2015.09.016
0266-8920/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: vac212@lehigh.edu (V. Christou),

paolo.bocchini@lehigh.edu (P. Bocchini),
manuel.j.miranda@hofstra.edu (M.J. Miranda).

Probabilistic Engineering Mechanics 44 (2016) 53–65

www.sciencedirect.com/science/journal/02668920
www.elsevier.com/locate/probengmech
http://dx.doi.org/10.1016/j.probengmech.2015.09.016
http://dx.doi.org/10.1016/j.probengmech.2015.09.016
http://dx.doi.org/10.1016/j.probengmech.2015.09.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2015.09.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2015.09.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2015.09.016&domain=pdf
mailto:vac212@lehigh.edu
mailto:paolo.bocchini@lehigh.edu
mailto:manuel.j.miranda@hofstra.edu
http://dx.doi.org/10.1016/j.probengmech.2015.09.016


subjected to Gaussian and non-Gaussian noise [6,7]. Mingolet and
Soize [8] utilized SROM for the determination of the response of
geometrically nonlinear structural dynamic systems and Warner
et al. [9] employed it to approximate the natural frequencies and
modes of uncertain dynamic systems. The basic idea of SROM
methods is to consider an optimization problem where the ob-
jective function quantifies the discrepancy between the statistics
of the SROM and the random function being modeled. It will be
shown that the methodology presented in this paper is rooted in a
similar idea, but the optimization problem will be formulated in a
different way. A discussion of the differences between SROM and
the proposed methodology is provided in Section 4.

As an alternative to SROM, Functional Quantization (FQ) is a
novel technique, proven to provide optimal approximations of
random functions using a pre-determined number N of re-
presentative samples [10,11]. Moreover, some authors have used
FQ directly as a variance reduction technique [12,13]. FQ is char-
acterized by two major differences, compared to MCS: (1) the re-
presentative samples from FQ are selected not entirely at random
and (2) the representative samples from FQ are not equally
weighted. A few techniques for the selection of optimal samples
and computation of associated probabilities based on the FQ
concept have been presented in the literature. Some of the best
known quantization techniques were presented by Lushgy and
Pagés under the “Quantizer Design” umbrella [14]. The Quantizer
Design I yields optimal results, whereas Quantizer Design II, III and
IV are sub-optimal, but they are characterized by improved com-
putational efficiency. All these techniques rely on the use of Kar-
hunen–Loéve expansions, and therefore, they have been demon-
strated only on Gaussian random functions for which such

expansion is readily available. Another class of techniques was
proposed by Corlay and Pagés [15]. They have the appeal of con-
necting FQ with the very popular stratified sampling approach.
The authors presented four different versions of the approach but
as in the case of the Quantizer Design, these techniques have been
applied only to one-dimensional Gaussian processes.

To overcome the limitations that affect the previously men-
tioned FQ techniques, in this paper, a recently developed metho-
dology called “Functional Quantization by Infinite-Dimensional
Centroidal Voronoi Tessellation” (FQ-IDCVT) is considered [16].
The FQ-IDCVT technique has been successfully used for one-di-
mensional, non-Gaussian and non-stationary processes [17] and it
has been shown to work particularly well against the curse of
dimensionality that arises in stochastic problems that use random
functions for input quantities.

To further enhance the versatility of the technique, this paper
presents it's extension to the case of random functions defined
over a multi-dimensional domain. A description of the modifica-
tions to the existing algorithm required by the extension to multi-
dimensional fields is accompanied by its demonstration on two
numerical applications. The first example involves a two-dimen-
sional lognormal field, generated through the Spectral Re-
presentation method (SRM) [18]. For the simulation of the two
dimensional field, a recently developed algorithm that approx-
imates a non-Gaussian stationary multi-dimensional field is uti-
lized [1]. Next, a sensitivity analysis is used to discuss the limits of
applicability of the proposed approach and comments on the
computational challenges associated with the extension to two-
dimensional fields are provided. Finally, a second numerical ap-
plication involving a two-dimensional panel in plane-stress with

Nomenclature

NotationDefinition
Ω1 i indicator function of Ωi

Δ distortion
κ κΔ Δ,1 2 space increments
ξ ξΔ Δ,1 2 wavenumber increment

Σ covariance matrix
Ξ spatial domain of interest in n

Ω sample space
Ω( ), ,  probability space

κ κ,1 2 wave number in the two investigated dimensions
λ correlation length
μRvv

mean value of ( )R v v,vv 111 61 for all the estimations
μ̄Rvv

mean value of ( )R v v,vv 111 61 computed from MCS
ξ ξ,1 2 field axes in the spatial domain
ρ ( )y mass density at point y
BE bias error
CVT Centroidal Voronoi Tesselation
DKS Kolmogorov–Smirnov index
F random function
FN random function used to approximate F
FQ Functional Quantization

ξ ω( )F , bi-measurable random field
IDCVT Infinite-Dimensional Centroidal Voronoi Tesselation

Ξ( )L2 space of square integrable functions
L L,1 2 number of discretization points in the wavenumber

domain
M M,1 2 number of points of the simulated stochastic field
MCS Monte Carlo simulation
N quantizer size

nseeds number of different seeds used to obtain different
estimations

Ni number of samples fi that belong to tassel Vi

Nsim computational parameter ( = ·N N ksim , where k
∈[ ]100, 5000 )

Ω( )i probability associated with the subset Ωi

( )VF i probability mass of tassel Vi

( )xPDF probability density function
Rvv autocorrelation between two points

n Euclidean n-space
SDF spectral density function
SE stochastic error
SFF spectral density function
SRM spectral representation method

ξ ξT T,1 2 periods of the generated field
{ } =Vi i

N
1 tassels corresponding to Ω{ } =i

N
1

VT Voronoi Tesselation
b b,1 2 parameters proportional to the correlation length
fi deterministic function representative of FN over Ωi

(i.e., quanta)
f̌i generating point of tassel Vi

f̄i centroid of tassel Vi

{ } =f p,i i i
N

1 quantizer

{^ } =fk k
N

1
i represents the Ni samples that belong to tassel Vi

k k,u u1 2 upper cutoff frequency
pi probability mass
ξ point in Ξ
yi all points that belong to Vi (finite-dimensional case)
y̌ generating point of tassel Vi (finite-dimensional case)
ȳ mass centroid of the tassel (finite-dimensional case)
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