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ARTICLE INFO ABSTRACT

Different from non-dispersive wave models such as the shallow water equations, MCC (Miyata, Choi, and
Camassa) type strongly nonlinear dispersive wave model can describe not only the dynamics of surface waves,
but also those of internal waves. The MCC model for a two-layer fluid system is applied to study dynamics of
both surface waves and internal waves. The resonance mechanisms with atmospheric pressure disturbances are
numerically studied not only for surface waves, so-called Proudman resonance, but also for internal waves.
Baroclinic internal waves are generated when the speed of the atmospheric pressure disturbance is comparable
to the critical linear internal wave speed. We compare the amplitudes of generated internal waves to the re-
sonance theory for surface waves. Although most baroclinic internal wave phenomena can be explained by this
linear theory, the relative magnitudes of amplitudes for forced and free waves do not agree with the theory. In
addition, sequentially generated surface waves with resonance are observed when the radius of the atmospheric
pressure disturbance is small. Finally, the dynamics of both surface and internal waves over non-uniform bottom
topography are discussed in terms of Froude numbers to understand how they propagate and interact with each
other when the Proudman resonance condition is satisfied while they travel.

Keywords:

MCC type mathematical model
Two-layer fluid system
Atmospheric pressure disturbance
Internal wave

Froude number

Proudman resonance

1. Introduction

In many recent studies, water waves generated by moving atmo-
spheric pressure have been considered as one of the main causes of
coastal disasters. Storm surges commonly occur when a huge size of low
pressure moves to a coastline. Even small atmospheric pressure dis-
turbances can generate ocean wave, which may cause a costal disaster
when interacting with non-uniform bottom topography or coastal
shape. This phenomenon has been observed in many areas, e.g.
Argentina [1], the Mediterranean Sea [2], the Adriatic coast [3,4], the
East China Sea [5], the Louisiana shelf [6], the Balearic port of Ciuta-
della [7], and the west coast of Korea [8-10]. These waves are called
‘meteorological tsunami’ or ‘meteotsunami’, since they are tsunami-like
waves generated by different sources. These waves can produce de-
structive events, even though the overall effect of the wave is much less
than the seismic tsunami. The Proudman resonance [11-14] is a key
mechanism in the generation of meteotsunami. When generated waves
interact with coastline geometry, or when they are amplified by non-
uniform bottom topography, a disaster may occur at the coast.

Proudman resonance occurs when the pressure disturbance moves
at a speed similar to the linear long wave speed. Experimentally, it can
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be usually explained by some records from a local tidal station, by
comparing the speed of theoretical linear waves near the accident area
and estimating the speed of the pressure disturbances [1,3,5], when a
large amplitude wave hits the coast. Shallow water equations (SWE) —
or linear shallow water equations (LSWE) — have been used for math-
ematical models to understand Proudman resonance. Vilibi¢ [14] in-
vestigated abnormally large waves, due to Proudman resonance with
SWE, by simple numerical experiments. Vilibi¢ et al. [15,16] and Dra-
gani [17] also used SWE and carried out numerical experiments to
analyze amplified sea level oscillations induced by moving atmospheric
pressure disturbances. The effects of tides [10] and winds [4,18] are
considered with SWE to understand meteotsunamis. Niu and Zhou [19]
numerically investigated wave patterns produced by an atmospheric
pressure disturbance, with different Froude numbers, using SWE. Choi
and Seo [20] numerically studied wave run-ups by moving atmospheric
pressure over a sloped beach with SWE, and compared the maximum
run-up in terms of various Froude numbers. Besides SWE, a variable
coefficient Korteweg-de Vries equation (vKdV) has also been used to
explain lone soliton with an undular bore that occurred on the Atch-
afalaya shelf, Louisiana [6].

On the other hand, Proudman resonance can occur for internal
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waves in the ocean. We expect that the basic mechanism for amplifying
internal waves is not that different from amplifying surface waves, since
surface waves can be thought of as internal waves with greater density
differences. However, internal waves are different to surface waves in
their speeds and amplitudes. In general, the propagation speeds of in-
ternal solitary waves are slower and their amplitudes are larger. Thus,
internal waves are usually considered as fully-nonlinear large ampli-
tude waves existing in the pycnocline. In recent decades, many ob-
servations of internal waves have been reported due to the development
of remote-sensing technology. Internal waves are known to play an
important role in the transportation of energy and biological process
through dissipation or mixing mechanisms. An overview of internal
solitary waves and their mathematical models can be seen in [21,22].

Weakly nonlinear mathematical models — the KdV equation and its
variations — are used for understanding the dynamics of internal waves,
even though internal waves are highly nonlinear. It turns out that
weakly nonlinear models can capture some characteristics of highly
nonlinear waves. Thus, they can be considered as phenomenological
models for internal waves, since it is beyond the formal validity range
of the models [21]. Other than weakly nonlinear models, Miyata [23],
Choi and Camassa [24] suggest a strongly nonlinear two-layer model,
called MCC model, from coupled incompressible Euler equations under
the long wave assumption. It removes the traditional weakly nonlinear
assumption to better understand the dynamics of large amplitude in-
ternal waves. The MCC model is asymptotically the same as KdV
equation and the Intermediate Long Wave equation (ILW) when addi-
tional assumptions are applied [24]. It is known that the solitary wave
solutions of two-layer MCC model are well suited with experimental
data and the solutions of Euler equations [25]. In addition, a multi-layer
model is similarly derived in Choi [26] under the same assumption,
which we call the MCC-type model. One of drawbacks of a multi-layer
model is the instability of the solution, since Kelvin-Helmholtz type
instabilities are common due to the small density differences [27]. The
instability of internal waves in the MCC model [27], the dynamics of
mode-1 and mode-2 internal waves with a three-layer fluid system [28],
and the dynamics of internal waves with a multi-layer model [29] have
been investigated through careful numerical treatments. However, we
note that most of works on MCC model are considered with the effect of
the bottom topography only.

We study the dynamics of surface waves and internal waves using a
MCC-type model, including the atmospheric pressure disturbance term.
In particular, we use a two-layer MCC model with non-rigid top and
bottom boundaries, which we call the MCC20 model. We consider
various atmospheric pressure disturbance sizes for considering the
storm as well as meteotsunami events. For validation of the model and
the numerical study, we compare some results with SWE, LSWE, and
two-layer SWE. The Proudman resonance, for not only surface long
waves but also internal waves, is discussed. Since Froude numbers for
surface waves and internal waves, respectively, are key parameters, we
numerically study the dynamics of ocean waves with various Froude
numbers and compare the result with the linear theory. We also con-
sider a case with relatively small radius pressure disturbances to see the
effect of high order approximated terms in the model. We find a me-
chanism of serially generating nonlinear surface waves with resonance.
Finally, we study the dynamics of waves propagating over non-uniform
bottom topography. This article is organized as follows. The MCC
model is described briefly in Chapter 2. (Note that detailed derivation
can be found in [23,24,26]). Numerical methods for SWE, LSWE, two-
layer SWE, and MCC model are also shortly described in the same
chapter. Numerical results with moving atmospheric pressure dis-
turbances and non-uniform bottom topography are discussed in Chapter
3. Dynamics of surface waves are considered in the first part and in-
ternal waves are considered in the last part of the chapter. Finally,
concluding remarks are in Chapter 4.
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2. Method
2.1. Governing equations

A two-layer fluid system is considered with non-rigid top boundary
and non-uniform bottom topography for the MCC20 model. The sub-
script i = 1, 2 is used for the upper and lower layer, respectively. Let h;
be the undisturbed thickness and p; be the density of each layer. We
assume that p; < p, for stable stratification. Let z = ¢@ (x, t) be the
equation for the top boundary — surface wave and z = ¢@ (x, t) be the
equation for the interface — internal wave. Then the MCC20 model,
derived from coupled incompressible Euler equations under the long
wave assumption, can be written by the thickness of the layer, »; and
the averaged horizontal velocity of the layer, u; as follows. From the
mass conservation,

N + (u)x =0, (¢h)

where 70 ) =0, 1) - (D(x, 1) and n,(x, 1) =
¢D(x, t) + hy — b(x). Note that z = b(x) is the equation for the bottom
topography. With a given atmospheric pressure equation, E,(x, t), the
evolution equations for each averaged horizontal velocity u;, u, can be
approximated as
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and g is the gravitational acceleration. A detailed derivation of the MCC
model can be found in Choi and Camassa [24] and Choi [26].

We mainly use the MCC20 model and compare the results with one-
layer shallow water equations (SWE1), linear shallow water equations
(LSWE1), and two-layer shallow water equations (SWE2). With un-
disturbed water depth h(x) = h; + h, — b(x), and averaged horizontal
velocity u(x), we note that SWE1 can be expressed as
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where H (x, t) = ¢{® (x, t) + h(x), and LSWE1 can be written as
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For SWE2, the mass conservation equations are identical to Eq. (1)
for each layer. Horizontal momentum equations are
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