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ARTICLE INFO ABSTRACT

Keywords: This work details the coupling of a Smoothed Particle Hydrodynamics (SPH) fluid solver with a general-purpose
SPH Differential Variational Inequality (DVI) based non-smooth multibody dynamics solver, allowing for efficient
DVI and accurate modeling of fluid-mechanism interactions, an ubiquitous scenario in natural and industrial settings.
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The SPH fluid model (DualSPHysics) can deal with flow non-linearities, free-surface and intense topological
changes, while the non-smooth dynamics model (Project Chrono) deals with discontinuous frictional contacts
and kinematic restrictions. An open-source integrated framework to model fluid-structure-structure coupled
systems is presented by implementing Project Chrono under DualSPHysics.

The model is validated with fluid—structure-structure interaction cases. Both frictional and multi-restriction
based behaviors are tested and simple convergence analysis are presented, showing that the model is capable of
reproducing complex interactions. Several hypothetical cases are then presented, in order to demonstrate pos-
sible applications, showcasing a wide set of options useful for practitioners requiring the use of advanced fluid-

mechanism models.

1. Introduction

Devices composed of rigid bodies interacting through frictional
contacts and several nonlinear constraints are extensively used in many
engineering fields, either featuring a small number of unilateral con-
tacts or including thousands of contacts between a large number of
parts. Mechanisms involving contacts and impacts between parts can be
modeled in terms of multi-body systems with unilateral constraints. The
simulation of rigid contacts entails the solution of non-smooth equa-
tions of motion: the dynamics are non-smooth since the non-inter-
penetration, collision, and adhesion constraints are discontinuous [1].
The interaction of these types of mechanisms with fluid flow is widely
seen in fields such as offshore engineering, fabrication processes,
coastal protection and renewable energy production.

Smoothed Particle Hydrodynamics (SPH) is becoming a mature tool
regarding environmental free-surface flows. It treats unsteady and non-
linear features, extreme deformations and complex topological evolu-
tions, such as a breaking free-surface, implicitly and with sufficient
accuracy to provide meaningful solutions to engineering problems.
Considerable advantages when computing interactions between objects
or structures and a flow [2] are also met. High-performance computing
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advances have allowed the method to cover applications once reserved
to specialized models, opening new possibilities in modeling even fur-
ther complex phenomena. Using the same developments in computing
and the introduction of accessible parallel computing solutions, very
efficient solutions are found for non-smooth multi-body systems. Con-
sidering the success of SPH for fluid descriptions and non-smooth multi-
body solvers for mechanical systems, attempting to couple both under a
generalized framework should provide new simulation possibilities, by
leveraging the strengths in both methods.

In this work the DualSPHysics code [3] is augmented with the
Project Chrono library [4], developed as a general-purpose simulation
framework for multi-body problems with support for very large sys-
tems. The library is implemented under the DualSPHysics code, pro-
viding an integrated interface to define and run arbitrarily defined
fluid-structure-structure coupled systems. Our implementation allows
for the straightforward definition of constraints such as joints (sphe-
rical, hinged and full restriction) and sliders (along an axis), combi-
nations of these (hinged slider for example) with arbitrary degrees of
freedom, i.e., such restrictions can be set between two bodies that are
otherwise unrestricted. The main contribution however is the efficient
treatment of such kinematic restrictions with user defined dynamic
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properties such as friction and restitution coefficients, restitution forces
from spring and damper systems and user-imposed forces and trajec-
tories.

The aim of this paper is to explore the DualSPHysics implementa-
tion of Project Chrono for modeling of interactions between fluid and
rigid bodies systems, with arbitrary mechanical restrictions applied.
The fluid implementation on DualSPHysics represents the current state-
of-the-art in balancing computational efficiency and numerical accu-
racy, while maintaining the necessary degree of generality for users and
researchers. More accurate particle approximation schemes have been
introduced such as Incompressible SPH [5] and CRKSPH [6] among
various others. Applicability to large and complex problems is limited
however, hence they are not considered currently. The work presented
is agnostic to the fluid discretization method, as well as the particulars
of the fluid-solid coupling.

In Section 2 the conceptual and numerical models used for the fluid
description are reviewed, mapping the equation systems underlying the
DualSPHysics implementation of SPH. Section 3 introduces the con-
cepts for the non-smooth multi-body dynamics model and the Differ-
ential Variational Inequality (DVI) equation system. Section 4 details
the validation cases of the fluid-mechanism solver, using three re-
ference experimental results. Following the validation cases, Section 5
showcases the potential of the model via a selection of cases were non-
linear flows drive and interact with complex mechanisms. Conclusions
are drawn in Section 6, by discussing the validation results, the us-
ability and attractiveness of the model from a practitioner standpoint
and the future developments.

2. Smooth-Particle-Hydrodynamics (SPH)

In SPH, the fluid domain is represented by a set of nodal points
where physical quantities such as position, velocity, density and pres-
sure are approximated at. These points move with the fluid in a
Lagrangian manner and their properties change with time due to the
interactions with neighboring nodes. The term Smoothed Particle
Hydrodynamics arises from the fact that the nodes, for all intended
means, carry the mass of a portion of the medium, hence being easily
labeled as “particles”, and their individual angular velocity is dis-
regarded, hence “smooth”. The method relies heavily on integral in-
terpolant theory [7]. An approximation to discrete Lagrangian points
can be made, by a proper discretisation of the continuous integral by
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called the summation interpolant, extended to all particles j,
|rj| = |r; — 13| < eh, where V; is the volume of particle j, A; is the ap-
proximated variable at particle i and W is the weight, or kernel, func-
tion. The summation approximation implies that particle first order
consistency, i.e., the ability of the kernel approximation to reproduce
exactly a first order polynomial function, may not be assured, since the
approximation error is inherent to the discrete form

Z ViW (g h) = 1
j (2)

may be large. This typically occurs near open boundaries or other dis-
continuities, where the kernel W does not satisfy compact support.
Mitigation may be considered, as the Shepard and MLS corrections. In
the work of [8] spatial gradients are computed using the gradient of the
kernel function.

A Quintic [9] kernel is employed in this work:

Wy ) =ap(1-2)' g+ 1, 0<g<2
ij» = YD 2 q s sq=2 (3)
where q = |ry/h| and ap = 21/16mh>, for a 3D case. The choice of
kernel function weights on the quality of the solutions [10], with the
Quintic kernel being recognized as a good choice for general free-
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surface problems [11].
2.1. Equations of motion in SPH
The proposed SPH formulation relies on the discretisation of the

Navier-Stokes and continuity equations. Written for a variable density
and neglecting the divergence of the velocity field, these are

Vi
d_vz__p+ﬁvzv+g
dt p P @
dp
- = —pW,
a =P )

where v is the velocity field, p is the pressure, p is the density and p and
g are the kinematic viscosity and body forces per unit mass, respec-
tively. The system is written in such a way as to avoid solving a Poisson
equation, using p = f(p) [12], using a weakly compressible formulation.
The continuity equation is discretised as

dp;

= 2 = v VW h) + @,
J

(6)
where m; is the mass of particle j and ®; is a diffusive term [13], de-

signed to stabilize the density field from high-frequency oscillations,
written as
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where § is a free parameter and c, is the numerical sound velocity. The
discretised version of Eq. (4) [14] can be written as

T=-% mj(p;;jj) VW (ry, ) + IT; + g ®
The first term of the right side is a symmetrical, balanced form of the
pressure term [7]. The second term represents viscous stresses, given by
either an artificial viscosity formulation [7], or a laminar [15] and a
sub-particle-scale (SPS) stress [16].

Following [7], the commonly used relationship estimate between
pressure and density is Tait's equation

p = P8 (&)y_l
14 Po

where p, is a reference density and y = 7 for a fluid like water. Ac-
cording to Eq. (9), the compressibility of the fluid depends on co, in
such a way that for a high enough sound celerity the fluid is virtually
incompressible. However the value of ¢y in the model should not be the
actual speed of sound, as the stability region is defined by
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where C is the Courant number, a constant of the order of 10! [10].
The first term results from the consideration of force magnitudes and
the second is a version of the classical CFL condition. This expression
takes into account numerical information celebrities and a restriction
arising from the viscous terms [10]. If the sound celerity in the simu-
lation is too high, it will render At very small and the computation more
expensive. ¢o is kept to an artificial value of around 10 times the
maximum flow speed, restricting the relative density fluctuations at less
than 1% [7]. As a consequence, the estimated pressure field given by
Eq. (9) usually shows some instabilities and may be subject to erroneous
distributions. The §-SPH diffusive terms contribute to the density field
and smooth most of the high frequency oscillations.
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