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a b s t r a c t

A compressive sensing (CS) based approach for stationary and non-stationary stochastic process power
spectrum estimation subject to missing data is developed. Stochastic process records such as wind and
sea wave excitations can often be represented with relative sparsity in the frequency domain. Relying on
this attribute, a CS framework can be applied to reconstruct a signal that contains sampling gaps in the
time domain, possibly occurring for reasons such as sensor failures, data corruption, limited bandwidth/
storage capacity, and power outages. Specifically, first an appropriate basis is selected for expanding the
signal recorded in the time domain. In this regard, Fourier and harmonic wavelet bases are utilized
herein. Next, an L1 norm minimization procedure is performed for obtaining the sparsest representation
of the signal in the selected basis. Finally, the signal can either be reconstructed in the time domain if
required or, alternatively, the underlying stochastic process power spectrum can be estimated in a direct
manner by utilizing the determined expansion coefficients; thus, circumventing the computational cost
related to reconstructing the signal in the time domain. The technique is shown to estimate successfully
the essential features of the stochastic process power spectrum, while it appears to be efficient even in
cases with 65% missing data demonstrating superior performance in comparison with alternative ex-
isting techniques. A significant advantage of the approach is that it performs satisfactorily even in the
presence of noise. Several numerical examples demonstrate the versatility and reliability of the approach
both for stationary and non-stationary cases.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Acquired data corresponding, for instance, to environmental
processes are often pivotal for defining and calibrating probabil-
istic engineering load models to be used in subsequent analyses of
critical engineering systems. In utilizing these data, power spec-
trum estimation can be an invaluable tool and an important
building block in engineering systems analyses, especially within a
Monte Carlo simulation framework, e.g. [1]. Nevertheless, in the
presence of missing data, there are certain limitations to standard
spectral analysis techniques such as those based on Fourier
transform. Missing data in this context refer to a stochastic process
time-history record, which for some reason has been sampled ir-
regularly or lost some of its original content. There are numerous
situations in which missing data may be unavoidable. These

include sensor failures, data loss or corruption, as well as limited
allocated time with shared equipment. In these situations it may
be infeasibly expensive or logistically impossible to re-record the
process in full, and therefore alternative analysis techniques are
required to best analyse and process the available data.

There exist many algorithms and procedures in the literature
that provide alternatives to standard Fourier analysis for spectral
estimation in the presence of missing data. Nevertheless, most of
these alternatives come with certain drawbacks and often impose
several assumptions on the statistics of the underlying stochastic
process. For instance, autoregressive methods can be used to fit a
model to the data, most often under the assumption that the
source time-history is relatively long and that the missing data are
grouped [2,3]. Further, least-squares sinusoid fitting and zero-
padded gaps [4–6] offer efficient solutions for re-constructing the
Fourier spectrum in the presence of missing data but suffer, in
general, from falsely detected peaks, spectral leakage and sig-
nificant loss of power as the number of missing data increases.
Other alternative approaches for spectral estimation in the case of
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non-uniform sampling may impose restrictions on the nature of
the missing data; e.g., infrequent loss [7,8] or assume that the
underlying process comprises a highly limited number of sig-
nificant harmonic components [9,10]. Recently, an artificial neural
network based approach was developed by the authors for power
spectrum estimation and simulation of stochastic processes sub-
ject to missing data [11]. A significant advantage of the approach
relates to the fact that no prior knowledge of statistics of the un-
derlying process is required.

Note that for the non-stationary case, additional challenges
arise when estimating the evolutionary power spectrum. In this
regard, alternatives to stationary methods (e.g. the Fourier trans-
form) can be utilized, such as wavelet [12–16] or chirplet (e.g. [17])
transforms, the short-time Fourier transform, Gabor transform
(e.g. [12]) and Wigner–Ville distribution (e.g. [18–20]). However,
the majority of approaches for addressing missing data in the
stationary case are not directly applicable in the non-stationary
case or impose the assumption that the process is locally sta-
tionary (e.g. [21]).

The approach to dealing with missing data in stationary and
non-stationary processes developed in this paper relies on the fact
that many environmental processes such as earthquakes, sea
waves, winds and tidal patterns can be characterized by a rela-
tively small number of dominant frequencies when expanded in
the frequency domain. This feature leads to considering com-
pressive sensing (CS) [22,23] as a promising tool for signal re-
construction and spectral estimation both of stationary and non-
stationary stochastic processes. In this regard, the capabilities of
the recently developed CS framework are exploited herein for
addressing the problem of estimating stationary and non-sta-
tionary stochastic process power spectra in cases where the
available realizations exhibit missing data. It is shown that in
conjunction with an appropriately selected basis, power spectra
are satisfactorily estimated in the presence of large (up to 65%)
amounts of missing data.

2. Stochastic process representation and spectral estimation

In this section, a concise review and related details on sta-
tionary and non-stationary stochastic process representation are
included for the full, uniform time-history case. Specifically,
Fourier and recently developed harmonic wavelet based power
spectrum estimation approaches are delineated, providing a basis
for the CS approach.

For any real-valued stationary process, X(t), there exists a cor-
responding complex orthogonal process Z ω( ) such that X(t) can be
written in the form (e.g. [24–26])
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In Eq. (2), SX ω( ) is the two-sided power spectrum of the process
X t( ). Further, a versatile formula for generating realizations com-
patible with the stationary stochastic process model of Eq. (1) [1]
is given by
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where kΦ are uniformly distributed random phase angles in the
range 0 2kΦ π≤ < . Furthermore, regarding estimation of the
power spectrum of the process of Eq. (1) based on available rea-
lizations, this is given by the ensemble average of the square of the
absolute Fourier transform amplitudes of the realizations. In this
context, standard established Fast Fourier Transform algorithms
can be utilized (e.g. [27]).

Next, for the case of non-stationary stochastic processes, a si-
milar to Eq. (1) rigorous process representation of non-stationary
stochastic processes needs to be employed (see also [28]). In this
regard, a framework was developed in [29] for representing non-
stationary stochastic processes by utilizing a time/frequency-lo-
calized wavelet basis as opposed to the Fourier decomposition of
Eq. (1); the representation reads
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where j k,ξ is a stochastic orthonormal increment sequence; tj k,ψ ( )
is the chosen family of wavelets and j and k represent the different
scales and translation levels, respectively. Further, the local con-
tribution to the variance of the process of Eq. (5) is given by the
term wj k,

2. The wavelet-based model of Eq. (5) relies on the theory
of locally stationary processes (see also [30]). The aforementioned
wavelet based representation can be viewed as a natural extension
in the wavelet domain of earlier work related to the representation
of non-stationary stochastic processes (e.g. [30–32]).

Focusing next on generalized harmonic wavelets [33], they
have a box-shaped frequency spectrum, whereas a wavelet of
m n,( ) scale and k( ) position in time attains a representation in the
frequency domain of the form
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where m, n and k are considered to be positive integers and
T2 / 0ω πΔ = ; and T0 is the total time duration of the signal under

consideration. A collection of harmonic wavelets of the form of Eq.
(6) spans adjacent non-overlapping intervals at different scales
along the frequency axis. The inverse Fourier transform of Eq. (6)
gives the time-domain representation of the wavelet which is
equal to
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Furthermore, the continuous generalized harmonic wavelet
transform (GHWT) is defined as

W
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and projects the function f t( ) on this wavelet basis. Next, utilizing
the generalized harmonic wavelets, Eq. (5) becomes (see [34])
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Eq. (10) represents a localized process at scale m n,( ) and trans-
lation k( ) defined in the intervals m n,ω ω[ Δ Δ ] and
kT n m k T n m/ , 1 /0 0[ ( − ) ( + ) ( − )], whereas S m n k, ,( ) represents the EPS
S t,X ω( ) at scale m n,( ) and translation k( ). Further, Eq. (10) can be
written in the form (see [34])
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