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a b s t r a c t

This paper presents a numerical model for the estimation of nanocomposite material properties and
fracture analysis. A non-uniform peridynamic grid is utilized to simulate the nanocomposites along with
Monte Carlo simulation which models single walled carbon nanotube (SWCNT) distribution, dispersion,
curvature, orientation, length and diameter. First, a random microstructure is generated from the user
inputs consisting of a polymer matrix and SWCNTs. The system is then solved via peridynamic techni-
ques and post-processed to obtain the bulk mechanical properties. Utilizing Monte Carlo simulations, the
mean effective modulus for a given set of input parameters is derived. Fracture analysis is performed
using a single realization and quasi-static loading conditions via peridynamics allowing simultaneous
and spontaneous propagating fractures. The model is validated against experimental data available in the
open literature.

Published by Elsevier Ltd.

1. Introduction

The role of carbon nanotubes in technology has been rapidly
expanding since their discovery in 1952. Carbon nanotubes pos-
sess exceptional mechanical, thermal and electrical properties.
Experimental studies of single walled carbon nanotubes (SWCNTs)
have measured Young's moduli on the order of 1 TPa using direct
methods such as with the tip of an atomic force microscope (AFM)
[1,2]. These findings have been corroborated using indirect
methods which generally includes embedding CNTs in a matrix
and loading the composite [3,4]. Further, many theoretical studies
have validated this impressive strength [5–8] which is five fold
that of steel at one sixth the weight [9]. Experimental studies have
also found the electrical conductivity of SWCNTs to be in the range
of tens of millions of amps per square millimeter ( −10 10 A/mm6 7 2)
[10,11]. SWCNTs are able to sustain these current densities at high
voltages and temperatures without major degradation of the ma-
terial properties [10] indicating current capacities 1000 times that
of copper wire [12]. Thermally, SWCNTs continue to outperform
most materials with theoretical thermal conductivities as high as
6000 W/m-K at room temperature [13]. Experimentally, however,
thermal conductivities are generally reported to be an order of
magnitude lower [14,15] with imperfect bonding and defects

being the primary suspect for the difference [16]. These properties
make carbon nanotubes exceptional reinforcing agents. These CNT
reinforced composites have a multitude of practical applications
due to various potential matrix materials and chemical coatings
for CNTs. The potential capabilities of nanocomposites and their
broad application to many fields has developed a need to reliably
predict these material properties and the fracture mechanics of
nanocomposites.

1.1. Current models

In the pursuit of a reliable model, many approaches have been
reported in the open literature. Frankland et al. [17] and Zhu et al.
[18] used molecular dynamics to produce stress–strain curves for
SWCNT nanocomposites. These studies reported significant in-
creases in strength for periodic nanotubes. In [19,,20] micro-
mechanics models were implemented to model nanocomposites.
Effects of waviness and orientation were studied and reported to
have a significant effect on the strength of nanocomposites. Multi-
scale models have also been implemented to great effect. Seidel
and Lagoudas [8] developed a two-step process modeling nano-
tubes as composite cylinders and incorporating them into a con-
tinuous matrix using the Mori-Tanka method. Building from this
work Spanos and Esteva [21,22] and Spanos et al. [23] developed
the embedded fiber finite element method (EFFEM). This model
also implements Monte Carlo simulation accounting for stochastic
nanotube morphology. However, these models require significant
adaptation to model fracture and often require significant
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assumptions to incorporate nanotubes. The proposed model cir-
cumvents this by utilizing peridynamics as developed originally by
Silling [24] which handles material discontinuities intrinsically.
This allows the proposed model to directly incorporate any num-
ber of different materials directly without special treatment. Fur-
ther, peridynamics allows the spontaneous formation and propa-
gation of fracture within a material.

1.2. Peridynamics

The modeling of discontinuities, such as propagating cracks,
fracture or material junctions, is a fundamentally challenging part
of mechanics and one of ever increasing importance. Peridynamics
is a relatively new formulation and falls into the category of non-
local mechanics. Non-local mechanics theory was proposed by
Kroner and Eringen et al. in the 1960's and 1970's [25,26]. How-
ever, Silling developed a new technique called peridynamics
which eliminated the need for spatial derivatives [24]. In peridy-
namics a particle interacts with other distant particles through an
integral force which eliminates the need for spatial derivatives and
thus allows the modeling of discontinuities without special
treatment. In addition, the method allows the spontaneous for-
mation and growth of discontinuities. Peridynamics has been de-
scribed as a continuum version of molecular mechanics.

Since Silling's original work, many authors have expanded
upon the framework of peridynamics. In [27] the method was
generalized to a state based model which removed material re-
strictions from the original method. It was shown in [28] that the
one-dimensional peridynamic theory converges to the classical
theory as the horizon approaches zero. Peridynamics has also been
used to model nanofiber networks including van der Waals forces
[29]. In [30] Silling and Askari developed a brittle peridynamic
model for use in dynamic simulations. Gerstle et al. [31] used
peridynamics to model reinforced concrete structures using MA-
TLAB code. Recently Duzzi et al. [32] applied the peridynamic
theory to nanocomposites using several different filler materials.
They used a uniform grid and then randomly changed the prop-
erties of certain nodes to account for added nanofillers. The au-
thors utilized Silling's original bond-based peridynamic model
rather than the state based model.

The bond based model is utilized here as well due to its sim-
plicity. Further, the proposed model incorporates a non-uniform
grid through direct placement of nanotube nodes which allows the
model to account for nanotube morphology. The nanotube mor-
phology is based upon the work by Spanos and Esteva [21,22] and
Spanos et al. [23]. The model also directly incorporates an interface
effect between nanotubes and the matrix accounting for material
bonding. Further, the proposed model allows for the direct mod-
eling of fracture and crack propagation in nanocomposites which
is a difficult but important field of study.

2. Bond based peridynamics

The peridynamic equation of motion is a partial integro-dif-
ferential equation and describes the motion of a material point at
x in the reference configuration at time t and is given as

( )∫ ( )üρ ( ) = − ( ) − + ( )
( )( )

x f u x u x x x b xt t t dV t, , , , , ,
1H x

xj j j

where ρ is the material density, u is the displacement vector, f
denotes the pairwise force function measured in force per unit
volume exerted on the point x by the point xj, b is the body force
density, and ( )H x is the domain of point x. The relative position in
the reference configuration is denoted as

ξ= − ( )x x, 2j

while the relative displacement at time t is

( )η= − ( ) ( )u x u xt t, , . 3j

Therefore, Eq. (1) can be recast as

∫ü η ξρ ( ) = ( ) + ( )
( )( )

x f b xt dV t, , , ,
4H x

xj

where ( )H x is the domain of x defined by

{ }ξ δ( ) = ≤ ( )H x x : . 5j

In two dimensions this yields a disk with radius δ centered at x.
The stretching of bonds in a peridynamic material is given by

η ξ ξ η ξ
ξ

( )= + +
( )

s t, , .
6

The stretch of the bond is the determining factor as to whether
they have failed and hence governs the force between particles
similar to strain in classical mechanics theory. Quantifiable da-
mage at a node is given as

∫
∫
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where total failure of the bond occurs by
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and s0 is a predetermined failure criterion.
In linear peridynamics, assuming small displacements, the

pairwise force function simplifies to

η ξ ξ η( )= ( ) ( )Cf , . 9

The micromodulus tensor is given in [33] as

ξ ξ ξ
ξ
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( )

C c ,
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where c0 is derived from a pairwise micropotential based on a
proportional microelastic material model. The peridynamic coef-
ficient, c0, can be conceptualized as a stiffness coefficient for the
bond between two material points and is given for a 2-D plate
with a fixed Poisson ratio of ν = 1

3
as

πδ
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( )
c

E

h

9
,
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where E is the Young's Modulus and h is the material thickness.
This formulation is derived from equating the strain energy of a
peridynamic material to that of a regular continuum material
[31,34,35].

2.1. Discretization

The static load being applied to a single point volume, xi, by
every other point within its horizon, xj, is given by

∫ ξ η= ( ) +
( )

C bdV0 .
12H

x i
i

j

Discretizing the right hand side of Eq. (28) and expanding η
yields

∑ ξ= ( )( − ) +
( )

C u u bV0 .
13j

N

j i j i

This can formed into a stiffness density matrix where the 2�2
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