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a  b  s  t  r  a  c  t

The  discrete  element  method  with  dilated  polyhedral  elements  is  developed  to  simulate  the  interaction
between  ice  floes  and  the  floating  structure.  The  2D-Voronoi  tessellation  algorithm  is adopted  to  gener-
ate polyhedral  ice floes  with  a given  ice thickness  in broken  ice  field.  According  to  the  Minkowski  sum
theory,  the dilated  polyhedron  is constructed  via sweeping  a sphere  on the  surface  of  a  basic  polyhedron.
The  Hertzian  contact  model  and  its simplified  form  are then  adopted  to determine  the  contact  force
between  dilated  elements  due  to the round  profile  of  the  element.  Meanwhile,  the  buoyancy  and  buoy-
ancy moment,  the drag  force  and drag  moment  on ice floes  are  calculated  by meshing  every polyhedral
element  as tetrahedrons.  The  floating  structure  Kulluk,  which  operates  in  the  Arctic,  is modeled  as  a  rigid
body  restricted  by mooring  lines  with the  linear  stiffness.  The  structure  motion  is  calculated  with  six
degrees  of freedom  in  terms  of the  ice contact  force,  the  buoyancy,  the  drag  force  of  current,  and  the
mooring  force.  Under  different  ice  thickness  and  concentration,  the  ice  load  on  the  floating  structure  is
reasonably  compared  with  the field  data.  General  influences  of  different  ice  conditions  are  analyzed  to
provide  operational  principles  in  engineering.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The sphere in 3D has been adopted in discrete element method
(DEM) since its contact detection and force model are simple and
efficient. The bonding model of the sphere element was  developed
systematically for applications in engineering [1]. However, the
sphere element has drawbacks in describing the complex shape
of the granular matter, and scale parameters would influence the
result seriously [2]. Considering the disadvantages of the sphere
element, non-spherical particle element including the clump ele-
ment consisted of several bonded spheres is developed in DEM
[3–5], especially the polyhedron-based DEM which is widely used
in the geological evolution and the geotechnical engineering due
to the realistic geometric shape [6–8].

It is well known that the computation time of the polyhedron-
based DEM is mainly cost in the contact detection which includes
the calculation of the contact point and the overlap between con-
tacted polyhedrons [9,10]. The Common-plane (CP) algorithm is
one of the most famous and important methods [11]. The fast
common plane (FCP) [12] and the shortest link method (SLM)
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[13] were developed based on the CP. However, the efficiency
of such CP-based methods greatly depends on the choice of the
initial point/section and the number of iterations is highly uncer-
tain [14], especially when the objective polyhedron or the contact
pattern is excessively special in 3D space. Meanwhile, the determi-
nations of the contact point and the normal direction are different
in different detection methods, especially for the singularity in the
corner–corner contact pattern [15]. The digital method costs a huge
computational memory [16], and the ODDS (Orientation Discretiza-
tion Database Solution) approach is not suitable for the particles
with many different shapes [17]. On the other hand, the contact
force of polyhedrons is mostly determined by a product function
between a constant stiffness and the overlap [13,18]. Usually the
stiffness is determined by experience and without physical reasons.
Thus, such solutions of the contact force are short of mechanical
bases and just for a heuristic simulation for now.

The Minkowski sum is adopted to generate the dilated polyhe-
dron with the tunable grain roundness which can make the contact
detection more efficient [19,20]. The finite wall method [21] and
the shrunken edge algorithm [22] applied in the contact detection
were developed with the homologous morphology concept. The
dilated flat disk was  introduced to simulate the ice motion with the
Minkowski sum [23,24]. This method for the polyhedron/polygon
element in DEM was initially and systematically introduced by

https://doi.org/10.1016/j.apor.2018.02.022
0141-1187/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.apor.2018.02.022
http://www.sciencedirect.com/science/journal/01411187
http://www.elsevier.com/locate/apor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apor.2018.02.022&domain=pdf
mailto:jisy@dlut.edu.cn
https://doi.org/10.1016/j.apor.2018.02.022


54 L. Liu, S. Ji / Applied Ocean Research 75 (2018) 53–65

Fig. 1. Dilated polyhedron generation: (a) dilated polyhedron by the Minkowski sum of a polyhedron and a sphere; (b) different shapes of dilated polyhedron with different
dilated  radii.

Pournin and Lionel [25], and then developed by Alonso [26] and
Galindo-Torres [27]. The singularity of the corner contact and the
choice of the contact point are solved credibly by this means. Fur-
thermore, the bonding model for the breaking process and the
LBM (Lattice Boltzmann Methods)-DEM coupled model have been
established by the dilated polyhedral element [28,29]. The dilated
polyhedron has extensive applications in engineering.

The discrete element method is applied in the sea ice simula-
tion to represent the granular characteristics of the sea ice [30–33].
The fracture of ice is also simulated by DEM based on continuum
theory and bonding model [34–36]. The discrete element method
is an important method to simulate the ice collision, pile-up, and
dynamic ice loads on the structure. The station keeping in the bro-
ken ice cover is modeled with DEM and vortex element method to
concern the complex hydrodynamics on the structure and ice floes
[37]. The ice load on floating structure from the level ice and ice
floes is simulated by 2D Particle-In-Cell method [38] or ice fracture
theory [39]. However, a real 3D scaled DEM simulation for the inter-
action between ice floes and the floating structure is still demanded
to analyze the ice load in engineering and the practical operations.

In this paper the dilated polyhedral DEM is developed including
the element construction, the contact force model and the con-
tact detection method. The multiprocessing parallel technology
OpenMP (Open Multi-Processing) is utilized to improve the com-
putational efficiency. The interaction between sea ice floes and the
floating structure Kulluk is simulated to determine the ice load. The
simulation results are validated against field data.

2. Initialization of ice element

The dilated polyhedron is constructed by the Minkowski sum
of a sphere and a randomly-shaped convex polyhedron. Vertices
and edges are turned to be spheres and cylinders in the dilated
polyhedron. Meanwhile, the 2D-Voronoi tessellation algorithm is
employed for the random distribution of the floe size and shape.
Hence, the elements representing ice floes are generated by stretch-
ing polygons from the 2D-Voronoi diagram at vertical direction.

2.1. Generation of dilated polyhedron

The Minkowski sum of a polyhedron A in 3D space and a sphere
B is defined by [19]

A ⊕ B =
{

�x + �y|�x ∈ A, �y ∈ B
}

(1)

where the operator ⊕ means sweeping one set around the profile
of the other. A dilated polyhedron is constructed by the Minkowski

sum of a basic polyhedron and a sphere. The outcome is a larger 3D
geometric shape with smooth corners and edges, as shown in Fig. 1.
Different shapes of dilated polyhedron can be generated by differ-
ent shapes of basic polyhedron and different sphere radii (dilated
radii).

Normally, the overlap between polyhedrons in contact required
in the contact force model cannot be obtained efficiently. The
contact detection of two spheres is more efficient than that of
two polyhedrons, and therefore the overlap is easier to be deter-
mined owing to the simple geometry parameters of the sphere. A
dilated polyhedron could be regarded as a polyhedron enwrapped
by countless spheres according to the definition of Minkowski
sum. Hence, the contact detection of dilated polyhedrons can
be converted into the contact detection of spheres. In fact, the
contact detection of polyhedrons including vertex-vertex, vertex-
edge, vertex-face, edge–edge and edge-face are converted into:
sphere-sphere, sphere-cylinder, sphere-face, cylinder–cylinder
and cylinder-face between dilated polyhedrons. The efficiency of
contact detection is improved by the Minkowski sum apparently.

2.2. Generation of broken ice field with Voronoi tessellation

The random distribution of floes including shape, size and ice
concentration is important to the numerical simulation [40,41]. The
2D-Voronoi tessellation algorithm is employed to divide a domain
into random shape of polygons called 2D-Voronoi diagram (also
called 2D-Voronoi cell) [42]. This diagram is based on some ran-
dom points called Voronoi points in the domain. Firstly the Voronoi
points are connected to be Delaunay triangles which are unique if
the points are settled. The perpendicular bisectors of every trian-
gle segments are then drawn until convex and closed polygons are
formed. Fig. 2(a) shows 200 Voronoi points and the outcome of
the Voronoi tessellation algorithm while the rectangle boundary is
concerned.

The ice concentration can be decided directly. If the broken ice
area is S = l · w, where l and w are the length and width of this
region, the pure ice area S′ under the ice concentration c can be
computed as S′ = l · w · c =

(
l · √

c
)

·
(
w · √

c
)

= l′ · w′, where l′ and
w′ are the length and width of this new area. Then the Voronoi
polygons would be created on the new area S′. The position of each
polygon can be rearranged according to the ratios of S′ to S. Ulti-
mately the polygon will be rearranged on the entire region with
the objective ice concentration. Fig. 2(b) shows the example of a
broken ice field with ice concentration of 60%.

The distribution of the floe shape and size cannot be controlled
directly. The shape and size distribution is influenced by the distri-
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