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A B S T R A C T

Wave-to-Wire numerical models being developed for the study of wave energy converters usually make use of
linear potential flow theory [1–5] to describe wave-structure interaction. This theory is highly efficient from a
computational perspective. However, it relies on assumptions of small wave steepness and small amplitude of
motion around mean positions. Often, maximization of wave energy converters’ energy performance implies
large amplitude motion [6–8], thus contradicting the assumption of small amplitude motion.

An alternative approach is to linearize the free surface conditions on the instantaneous incident wave ele-
vation (Weak-Scatterer approach [9]) while the body conditions are evaluated at the exact body position. Studies
of wave energy converters’ dynamic response using this method are expected to be more accurate, while
maintaining a reasonable computational time. With this aim, a Weak-Scatterer code (CN_WSC) was developed
and used to study two submerged wave energy converters. The first is a heaving submerged sphere and the
second is a bottom-hinged fully submerged oscillating flap. They are inspired respectively by the Ceto [10] and
WaveRoller [11] devices.

Initial calculations were performed in linear conditions first to verify the CN_WSC against linear theory.
Subsequently, calculations in nonlinear conditions were performed, using large wave steepness and amplitude of
body motion. In linear conditions, results of CN_WSC showed good agreement with linear theory, whereas
significant deviations from linear theory were observed in nonlinear conditions. As amplitude of body motion
increases, linear theory tends to overestimate energy performance in comparison with Weak-Scatterer theory. In
contrast, with smaller amplitude of motion but larger wave steepness, the opposite result is obtained: energy
performance is underestimated by linear theory compared to Weak-Scatterer theory.

1. Introduction

The standard numerical tools for modeling and designing wave
energy converters (WECs) rely on linear potential theory [1–5], and as
such are limited to movements of small amplitude around mean posi-
tions. However efficiency of WECs relies on large amplitude motion [6]:
by design, their resonant frequencies must fall in the wave excitation
range. Linear potential theory has been shown to be insufficient to
model the behavior of WECs in such configurations [7,8]. Thus, other
numerical approaches are required. A nonlinear potential-flow model,
in the context of a numerical wave-tank (NWT), was pioneered by
Longuet-Higgins and Cokelet [12]. In their work, they used the mixed
Eulerian–Lagrangian (MEL) approach, solving the Laplace equation in
an Eulerian coordinate system, and then advecting the nodes at the
mesh boundaries. Since that time, several wave tanks have been de-
veloped, in both two and three dimensions [13–16]. Issues related to

the development of NWT have been reviewed by Tanizawa [17]. Recent
developments have focused on accelerating three-dimensional NWT
(computational requirements are still large) and address issues of
gridding, numerical stability, and accuracy that can be problematic for
complex geometries [18,19].

A weakly nonlinear approach, based on the Weak-Scatterer (WS)
approximation, is expected to be a promising alternative that avoids or
reduces the impediments of fully nonlinear potential-flow codes.
Introduced by Pawlowski [9], this class of approximation is based on
linearization of the free surface conditions on the incident wave ele-
vation, allowing treatment of nonlinear steep incident waves. The body
condition is evaluated at the exact instantaneous position of the body,
allowing large body motions to be taken into account. The only as-
sumption in the WS approach is that the perturbation potential is small.
Thus, numerical codes based on the WS approach are expected to be
accurate in cases with small to large amplitude body motions, incident
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waves of arbitrary steepness and when the perturbed wave is small. The
different quantities are then decomposed into incident and perturbation
components, with the incident ones as forcing terms while only the
perturbation ones are solved. The main advantage of this is that the
incident wave does not need to be propagated from a wave-maker, al-
lowing the mesh to be refined only in the vicinity of the body. More-
over, since the free surface boundary is known explicitly, the WS
method is expected to be more robust and stable than the fully non-
linear approach.

Several WS flow solvers have been developed in the past: SWAN-4
[20], LAMP-4 [21] and WISH [22]. Their fields of study were however
mainly focused on ship with forward speed, which can indeed be con-
sidered as slender bodies. As a consequence, the scattered waves and
motion responses are small and the assumptions of the WS approx-
imation are fulfilled. In this article, the aim is to investigate whether the
WS method can improve numerical modeling of WECs.

The development of this new solver is based on the experience
gained by the authors in the 90's in developing a three-dimensional
time domain boundary integral equation (BIE) solver for linear, second-
order and fully nonlinear wave-body interaction problems
[13,23,16,24]. In particular, although higher order BIE solvers are
available, the choice of a linear, isoparametric BIE solver based on
triangular elements has been maintained. This solution method presents
some important advantages, namely the capacity to express the surface
integrals in a purely analytic form, and very good efficiency (typically,
the ratio of number of unknowns to number of elements is approxi-
mately 0.5). In addition, it is possible to apply efficient mesh generation
schemes that originate from the finite element community, which is
considered to be key to practical applications. Analytical expressions
for the influence coefficients, initially unpublished [25], have been
completely redeveloped by the first author during his PhD work, and
are presented in Appendix A of this paper.

Comparisons with a fully nonlinear flow solver have been carried
out for a submerged body in forced motions [26]. In the present paper,
we extend this to the case of freely moving bodies, which requires new
equations and numerical implementations to calculate the motion of
the body. The Implicit method, introduced by Tanizawa [27] and based
on the solution of a second boundary value problem (BVP) for the time
derivative of the velocity potential, was chosen to solve the complex
implicit problem of the body motion calculations. We have developed a
new expression for the BVP body condition, which unifies the two ex-
pressions previously given by Tanizawa [27] and Cointe [28]; the de-
tails are presented in [29].

First, WS theory is recalled. The numerical implementations are
then introduced, namely the boundary element method, the time-
marching scheme and the fluid/structure interaction method. Finally,
the method is applied to two submerged WECs, using the Ceto [10] and
WaveRoller [11] systems as examples. For the purpose of verification,
results are initially compared to linear theory in linear conditions. Si-
mulations in nonlinear conditions, with large amplitude motions and
large steepness incident wave, are then conducted.

2. Methods

2.1. Potential flow theory

Assuming a fluid to be incompressible and inviscid with irrotational
flow, its flow velocity derives from a velocity potential ϕ which satisfies
the Laplace Eq.:

 =ϕ x y z t( , , , ) 02 (1)

in the fluid domain, D. The boundary of the fluid domain is
∂ = = ∪ ∪ ∪D Γ Γ Γ Γ Γb w dfs , see Fig. 1.

In the general case, without forward speed, it can be shown [30]
that the velocity potential is the solution of the following boundary
value problem (BVP):
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The free surface elevation is denoted by the single-valued variable η,
which means that wave overturning cannot be handled. g is the grav-
itational acceleration, Vb the body velocity and n the normal vector
pointing outwards from the fluid. ϕ0 is the velocity potential of the
incoming waves.

Using Green's Second Identity along with the Rankine source, it can
be shown that the resolution of the 3D Laplace equation in the fluid
domain can be reduced to a surface integral equation, on its boundaries.

2.2. The Weak-Scatterer approximation

The WS approximation relies on the decomposition of the velocity
potential and the free surface elevation (ϕ, η) into the incident (ϕ0, η0)
and the perturbation (ϕp, ηp) components, see Fig. 2.

Fig. 1. Domain definition: boundaries and reference frames.

Fig. 2. Weak-Scatterer decomposition and definition of the different wave
elevation components.
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