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a b s t r a c t

Reliability-Based Design Optimization (RBDO) is computationally expensive due to the nested optimi-
zation and reliability loops. Several shortcuts have been proposed in the literature to solve RBDO pro-
blems. However, these shortcuts only apply when failure probability is a design constraint. When failure
probabilities are incorporated in the objective function, such as in total life-cycle cost or risk optimiza-
tion, no shortcuts were available to this date, to the best of the authors knowledge. In this paper, a novel
method is proposed for the solution of risk optimization problems. Risk optimization allows one to
address the apparently conflicting goals of safety and economy in structural design. In the conventional
solution of risk optimization by Monte Carlo simulation, information concerning limit state function
behavior over the design space is usually disregarded. The method proposed herein consists in finding
the roots of the limit state function in the design space, for all Monte Carlo samples of random variables.
The proposed method is compared to the usual method in application to one and n-dimensional opti-
mization problems, considering various degrees of limit state and cost function nonlinearities. Results
show that the proposed method is almost twenty times more efficient than the usual method, when
applied to one-dimensional problems. Efficiency is reduced for higher dimensional problems, but the
proposed method is still at least two times more efficient than the usual method for twenty design
variables. As the efficiency of the proposed method for higher-dimensional problems is directly related to
derivative evaluations, further investigation is necessary to improve its efficiency in application to multi-
dimensional problems.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In a competitive environment, engineering systems have to be
designed taking into account not just their functionality, but also
their expected construction and operation costs, and their capacity
to generate profits. This capacity depends on the risk that con-
struction and operation of a product or facility implies to the user,
to employees, to the general public or to the environment. The
capacity to generate profits can be adversely affected by the costs
of failure. The performance and safety of structural systems is af-
fected by uncertainties, or natural randomness, in the resistance of
structural materials, in the loadings and in engineering models of
member resistance and load effects. Uncertainty implies risk, or
the possibility of undesirable structural responses.

In the context of structural optimization, many different for-
mulations have been employed in the last years in order to find
optimal designs. Among them, Deterministic Design Optimization
(DDO) allows one to find the shape or configuration of a structure
that is optimal in terms of mechanics, but it does not take directly
into account parameter uncertainties and their effects on struc-
tural safety. A typical formulation of DDO reads:

d d d darg min cost : S, , 1yieldσ σλ* = [ ( ) ∈ ( ) ≤ ] ( )

where d is a vector containing the design variables; S¼[dl, du] is a
vector of design constraints, with dl and du the lower and upper
bounds on the design variables; d,σ λ( )represents a deterministic
design constraint, such as allowable stress; and λ is a vector of
safety coefficients, given by some design code but generally not a
design variable. In Eq. (1), the cost function only includes cost (or
volume) of structural materials, and sometimes manufacturing
costs. Since safety is not quantified, the resulting optimal structure
may compromise safety, in comparison to the original (non-
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optimal) structure. This will generally happen as more failure
modes are designed against the limit. Nowadays, it is widely re-
cognized that DDO is not robust with respect to existing and un-
avoidable uncertainties in structural design.

Reliability-Based Design Optimization (RBDO) has emerged as
an alternative to properly model the safety-under-uncertainty part
of the problem. With RBDO, one can ensure that a minimum (and
measurable) level of safety is achieved by the optimum structure,
by applying a constraint on the failure probability, Pf . A typical
formulation of RBDO reads:

P Pd d d darg min cost : S, , 2f fadmissibleλ* = [ ( ) ∈ ( ) ≤ ] ( )

where Pf represents a reliability constraint. Generally, the cost
term in this formulation is the same as for DDO, that is, it does not
include expected costs of failure. Thus, RBDO allows finding a
structure which is optimal in a mechanical sense, and which does
not compromise safety. However, results are dependent on the
failure probabilities used as constraints in the analysis.

Risk Optimization (RO) increases the scope of the problem by
addressing the compromising goals of economy and safety [20,5–
7]. This is accomplished by quantifying the monetary con-
sequences of failure, as well as the costs associated with con-
struction, operation and maintenance, and by including these
costs in the objective function. Thus, (reliability-based) Risk Op-
timization will also indirectly look for the optimum safety factors
and failure probabilities:

Cd d darg min : S 3T* = [ ( ) ∈ ] ( )

where CT(d) is the total expected cost, including expected costs of
failure. Since Eq. (3) has no design or reliability constraint, its
solution also leads to the optimum safety factors, λ*, or the opti-
mum reliability constraints, P d ,f λ*( * *). Expected costs of failure,
for each possible failure mode of the structure, are evaluated by
multiplying costs of failure by probabilities of failure. Hence, we
note that in comparison to RBDO (Eq. (2)), in RO failure probability
is no longer a constraint but part of the objective function. The
term CT(d) is further detailed in Section 2.2.

A review of the literature shows that the nomenclature RBDO is
indistinguishably used to describe problems where failure prob-
abilities are design constraints [1,11–13,31,37,40,41], such as in Eq.
(2), or included in the objective function [10,14,17,2,21,29,32,34],
such as in Eq. (3). It should be clear that these two formulations
lead to two fundamentally different problems. Risk optimization
(Eq. (3)) yields an unconstrained optimization problem, char-
acterized by the existence of multiple local minima [19,20,6].
Classical RBDO formulations, such as Eq. (2), lead to constrained
optimization problems. In classical RBDO articles [1,11–
13,31,37,40,41] expected costs of failure are either not considered
or dismissed. In this article, we specifically address risk optimi-
zation problems.

Both RBDO and RO formulations lead to problems which are
very computationally intensive to evaluate. This occurs due to the
nested optimization and reliability analysis loops, which occur
either with failure probability as constraints or as part of the ob-
jective function. The computational burden is particularly large
when iterative numerical methods (e.g., non-linear or dynamic
finite element analysis) are employed in solution of the mechan-
ical problem.

A number of approaches have been proposed in the literature
in order to convert RBDO into DDO problems ([1,11–
13,3,25,31,37,39–41]). When the underlying reliability problem
(constraint in Eq. (2)) is solved by the First Order Reliability
Method (FORM) method, nested optimization loops are obtained
in the classical RBDO formulation. Since FORM is an optimization
procedure itself, RBDO becomes a nested, double-loop

optimization problem: the inner loop is the reliability analysis and
the outer loop is the structural optimization. The coupling of these
two loops leads to very high computational costs. To reduce the
computational burden, several authors have proposed decoupling
the structural optimization and the reliability analysis. De-cou-
pling strategies may be divided in two types: (i) serial single loop
methods and (ii) uni-level methods. The basic idea of serial single
loop methods is to decouple the two loops and solve them se-
quentially, until some convergence criterion is achieved. On the
other hand, uni-level methods employ different strategies to ob-
tain a single loop of optimization to solve the RBDO problem. State
of the art reviews of RBDO including de-coupling strategies are
provided in [25,3,39].

Significantly, all de-coupling strategies mentioned above ad-
dress the classical RBDO formulation (Eq. (2)), where failure
probabilities are design constraints. To the best of the authors
knowledge, no similar shortcuts exist for solving risk or life-cycle
cost optimization problems. Thus, the computational burden as-
sociated with risk optimization remains very large.

Solution of the underlying reliability problem is a key issue in
solving risk optimization problems. This is still a widely open re-
search field, as different reliability methods found in the literature
present very different computational costs and accuracies. More-
over, many new approaches have been proposed in recent years.
For instance, the Stochastic Subset Simulation method proposed
by Taflanidis and Beck [42] can be seen as a shortcut to solving the
risk optimization problem. However, this method rapidly loses
efficiency for increasing number of design variables. In the ap-
proach by Taflanidis and Beck [42], the design variables are arti-
ficially considered as uncertain and Subset Simulation is em-
ployed, in combination with a stochastic search algorithm, to solve
the reliability and optimization problems simultaneously. As an-
other example, the approach proposed by Jensen et al. [43] and
applied in a risk optimization problem by Valdebenito and
Schuëller [38], is very efficient even for problems involving thou-
sands of random variables; however, the method requires many
approximations, mainly when the objective function is the total
expected cost.

Among the usual methods for reliability analysis, simple Monte
Carlo simulation or Latin-Hypercube sampling have been em-
ployed in many applications, in combination with different opti-
mization algorithms, mainly due to generality and ease of accuracy
control. In general, accuracy of Simple Monte Carlo simulation
increases with larger number of samples. However, in the risk
optimization solution, one complete reliability analysis is required
for each trial design. Many variants of the Monte Carlo method
have been proposed in order to decrease the computational cost
by decreasing the number of samples required to achieve con-
vergence: Latin Hypercube sampling [22,33], subset simulation [4],
importance sampling [15], asymptotic sampling [27]. Regardless of
the sampling strategy, simulation-based methods in general only
look at one information about each sample: whether it belongs to
the failure domain or not. Hence, only the sign of the limit state
function matters. Information about how the limit state function
behaves over the design space is not computed. In this paper, it is
shown that this commonly employed strategy may not be the
most efficient. In this paper, a novel method is proposed, which
can in principle be combined with any of the sampling schemes
mentioned above. This method is based on finding, for each
sample, the roots of the limit state function in the design space.
This dramatically reduces the computational cost, as will be shown
herein.

The core of this paper is organized in four sections. Section 2
presents the structural reliability problem and the risk optimiza-
tion formulation. Section 3 describes the proposed method, fo-
cusing on its application in combination with Monte Carlo
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