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a  b  s  t  r  a  c  t

Computations  of  linear  wave  loads  and  second-order  mean  drift  forces  for a hemisphere  and  a freely
floating  FPSO  show  that global  analytical  approximations,  given  by  Wu  et al. in  2017,  to the  local
flow  components  in  the  Green  function  and  its  gradient  yield  numerical  predictions  that  closely  agree
with  numerical  results  obtained  via  a  highly-accurate  Green  function,  as  well  as  analytical  results  for  a
hemisphere.  The  computations  reported  here  provide  strong  evidence  that  the  global  analytical  approx-
imations,  valid  within  the  entire  flow  region,  are  sufficiently  accurate  to compute  linear  and  mean  drift
wave  loads  in  practice.
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1. Introduction

Boundary integral equations related to the linear potential flow
theory of diffraction-radiation of regular (time-harmonic) water
waves are routinely solved to predict wave loads and wave-induced
motions of large floating structures [1–5]. An essential ingredient
of that classical method is the Green function that satisfies the
linearized boundary condition at the free surface and the radia-
tion condition [6]. Practical, reliable predictions of wave loads and
wave-induced motions require that the Green function, and its gra-
dient, be evaluated efficiently and with sufficient accuracy.

The Green function can be expressed as the sum of the free-space
singularity (Rankine source) and a component that accounts for the
free surface. This free-surface component can be further decom-
posed into a non-oscillatory local flow component and a wave
component, which is dominant in the far field [7]. The wave com-
ponent in this basic decomposition is defined in terms of special

(real) functions (Struve functions H̃0 and H̃1 and Bessel functions
J0 and J1) of a single variable. These functions are finite and smooth
everywhere, and can be evaluated accurately and efficiently [8–11].

The non-oscillatory local flow components in the expressions
for the Green function and its gradient are real functions of two
variables and are defined by single integrals. Nearfield and farfield
analytical approximations to these local flow components are given

∗ Corresponding author.
E-mail address: noblfranc@gmail.com (F. Noblesse).

in [7] and used in [12]. These analytical approximations can also
be used to remove the nearfield singularities and to reduce the
unbounded region to a finite region, and thus make it possible to use
polynomial approximations within contiguous flow regions [13,14]
or table interpolation [15].

The nearfield and farfield analytical approximations to the local
flow components in the Green function and its gradient are also
used in [16] to obtain global analytical approximations that are
valid within the entire flow region. These global approximations are
less accurate than the approximations based on series expansions
[12], polynomial approximations within contiguous flow regions
[13,14] or table interpolation [15] previously given in the literature,
but are a particularly simple and intellectually satisfying alterna-
tive. Moreover, global approximations offer a significant practical
advantage because they avoid the need for “if statements”, required
if different approximations are used within complementary con-
tiguous regions, and are then especially well suited for highly
efficient parallel computations.

The error analysis given in [16] suggests that the global ana-
lytical approximations given in that study could be expected to
be sufficiently accurate for most practical applications. However,
the error analysis given in [16] is limited and insufficient. Indeed,
a more solid conclusion requires computations of linear wave
loads and second-order mean drift forces. Such computations are
reported here for a hemisphere and a Floating Production Storage
and Offloading (FPSO) unit.
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2. Green function and basic decomposition

Thus, the Green function related to diffraction-radiation of reg-
ular (time-harmonic) water waves in the lower half space Z ≤ 0
is now considered. A Cartesian coordinate system XYZ is defined.
The XY plane coincides with the undisturbed free surface and the
Z axis points upward. Time-harmonic flows associated with flow
potentials of the form

R
[
�(X) e−i ω T

]
(1)

are considered, and nondimensional coordinates are defined as

(x, y, z) ≡ (X, Y, Z)ω2/g (2)

Here, ω denotes the circular frequency and g is the acceleration
of gravity. The Green function G(x, �), where x ≡ (x, y, z ≤ 0) and
� ≡

(
�, �, � ≤ 0

)
denote a flow-field point and a source point, is

expressed in [6] as

(3)

where h, v, r and d are defined as

h ≡
√(

x − �
)2 + (y − �)2, v ≡ z + � ≤ 0, (4a)

r ≡
√
h2 + (z − �)2, d ≡

√
h2 + (z + �)2 =

√
h2 + v2, (4b)

and J0(·) is the zeroth-order Bessel function of the first kind.
The Green function G can be expressed as

4�G = −1/r − 1/d + L + W (5)

where L represents a non-oscillatory local flow component and
W is a wave component. The basic decomposition (5) of the Green
function is not unique. Several alternative representations are con-
sidered in [7]. The representation (5.11) in [7] is adopted here. The
wave component W in this representation is given by

W = 2�ev
[∼
H0(h) − i J0(h)

]
(6)

where H̃0( · ) denotes the zeroth-order Struve function. The local
flow component L in (5) is given by

L = − 4
�

∫ �
2

0

R
[

eME1(M)
]

d� where M ≡ v + i h cos � (7)

and E1(·) denotes the complex exponential-integral function.
The gradient of the Green function is given by

4�Gz = z  − �

r3
+ v
d3

+ Lz + W where Lz = −1
d

+ L (8a)

4�Gh = h

r3
+ h

d3
+ Lh + Wh (8b)

4�Gx = x − �

h
Gh and 4�Gy = y  − �

h
Gh (8c)

The derivatives Wh ≡ ∂W/∂h and Lh ≡ ∂L/∂h are given by

Wh = 2�ev[2/� − ∼
H1(h) + i J1(h)] (9)

where H̃1( · ) and J1(·) denote the first-order Struve function and
the first-order Bessel function of the first kind, respectively, and

Lh = 4
�

∫ �
2

0

I

[
eME1(M)  − 1

M

]
cos � d� (10)

The wave components W and Wh defined by (6) and (9) are indef-
initely differentiable. Practical polynomial approximations to the

Struve functions H̃0 and H̃1 and the Bessel functions J0 and J1 are

given in e.g. [8,9], and the wave component W and its derivative
Wh in (5) and (8) can then be evaluated efficiently and very simply.

The local flow components L(h, v) and Lh(h, v) defined by (7) and
(10) vanish as d → ∞ and are singular as d → 0. In particular, in the
limit d → 0, [7,16] show that one has

L∼2
(

log
d − v

2
+ 


)
and Lh∼

2h
d − v

(
1
d

+ 1
)

− 4 (11)

where 
 ≈ 0.577 is Euler’s constant. The functions L(h, v) and
Lh(h, v) are depicted in Figs. 8 and 9 of [16].

3. Global approximations to the local components L and Lh

The local flow components L and Lh can be evaluated, very
simply and efficiently, via the global analytical approximations
obtained in [16] by extending the nearfield and farfield approxi-
mations given in [7]. These practical global approximations, valid
within the entire flow region (0 ≤ h, v ≤ 0), are now considered.
The three parameters

0 ≤  ̨ ≡ −v
d

≤ 1, 0 ≤  ̌ ≡ h

d
≤ 1, 0 ≤ � ≡ d

1 + d
<  1 (12)

are used.
The local flow component L defined by the integral (7) is approx-

imated in [16] as

L ≈ La ≡ 2P/(1 + d3) + 2�(1 − �)3R where (13a)

P ≡ ev
(

log
d − v

2
+ 
 − 2d2

)
+ d2 − v and (13b)

R ≡
(

1 − ˇ
)
A − ˇB − ˛C

1 + 6˛� (1 − �)
+ ˇ

(
1 − ˇ

)
D (13c)

A, B, C and D in (13c) are polynomials in � defined as

A ≡ +1.21 − 13.328� + 215.896�2 − 1763.96�3 + 8418.94�4

−24314.21�5 + 42002.57�6 − 41592.9�7

+21859�8 − 4838.6�9

(14a)

B ≡ +0.938 + 5.373� − 67.92�2 + 796.534�3 − 4780.77�4

+17137.74�5 − 36618.81�6 + 44894.06�7

−29030.24�8 + 7671.22�9

(14b)

C ≡ +1.268 − 9.747� + 209.653�2 − 1397.89�3 + 5155.67�4

−9844.35�5 + 9136.4�6 − 3272.62�7

(14c)

D ≡ +0.632 − 40.97�  + 667.16�2 − 6072.07�3 + 31127.39�4

−96293.05�5 + 181856.75�6 − 205690.43�7

+128170.2�8 − 33744.6�9

(14d)

The local flow velocity component Lh defined by (10) is similarly
approximated in [16] as

Lh ≈ Lah ≡ 2P∗/(1 + d3) − 4Q∗ + 2�(1 − �)3R∗ (15a)

where P∗ ≡ (  ̌ + h)/(d − v) − 2  ̌ + 2dev − h, (15b)

Q∗ ≡ e−d (1 − ˇ
)(

1 + d

1 + d3

)
and (15c)
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