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Investigation of a stochastic system from a viewpoint of studying the randomness propagation process in
a physical system starts to play an important role in understanding the complete performance or be-
haviour of engineering systems. Following this path, the probability density evolution method (PDEM)
has been developed by Li and Chen at the beginning of this century on the basis of the principle of
probability preservation and its random event description. A family of generalized probability density
evolution equation (GPDEE) was then derived. The systematic analysis indicates that the new family of
equation actually reveals the logical fundamentals of randomness propagation in a physical system: the
transition of the probabilistic structure in a stochastic system definitely relies on the change of physical
state of the system. This paper devotes to a summary on the background and basic theoretical devel-
opments of the PDEM. Considering the limitation of probability conservative systems for the GPDEE, a
novel concept of probability dissipation is introduced and a completely uncoupled partial differential
equation is derived as well with respect to the evolutionary probability density function, which holds for
any physical quantity of a probability dissipative system. For illustrative purposes, several engineering
applications, including the dynamic reliability assessment of controlled structures with fractional deri-
vative viscoelastic dampers and the stability analysis of structures under dynamic loading, are in-

vestigated, respectively.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The great achievements of modern science and technology in
the 20th century have strongly enhanced the ability of mankind to
understand the phenomena, performance and mechanism of en-
gineering systems. As time goes on, the deficiency and inadequacy
of deterministic methodologies in modelling and analysis of en-
gineering systems are recognized more and more clearly, and
therefore, searching for a physical approach to stochastic systems
started to play an important role in understanding uncertain be-
haviours and performance of engineering systems, particularly
those emerging in nonlinear systems. In this way, the idea of
randomness propagation in a physical system starts to gain in-
creasing attention from researchers with interest focused on sto-
chastic dynamical systems.

In history, the study on stochastic dynamical systems was
generally recognized to be originated from Einstein's investigation
on Brownian motion. In 1905, by introducing the irregular colli-
sions between the Brownian particles, Einstein deduced an evo-
lution equation of the density of particles and found that this
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equation was a diffusion equation [5]. This thought was then
boosted by Fokker in 1914 and by further Planck in 1917, leading to
the probability density equation well known as the Fokker-Planck
equation in the physicist community [32,6]. In 1931, the Soviet
mathematician Kolmogorov derived the same equation in-
dependently. This investigation set a rigorous mathematical
foundation for the equation [10]. It is noticeable that although
Einstein started with the physical mechanism of irregular colli-
sions of molecules on Brownian particles, the crux of his tactics is
to treat the bulk behaviour of particles evolution in a phenom-
enological way. Due to Kolmogorov's work, the analysis of sto-
chastic dynamical systems can be converted to the problem of a
deterministic partial differential equation. Afterwards, far more
emphasis was put on the mathematical aspects than on the phy-
sical aspects.

Shortly later than Einstein, to study Brownian motion, another
famous physicist Langevin applied Newton's law to a single
Brownian particle and obtained the dissipation-diffusion relation
identical to Einstein's result in a much more concise way [12]. In
Langevin's investigation, the resultant force induced by the colli-
sions of the around molecules in the fluids was regarded as an
irregular (random) force exerted on the Brownian particle. This
treatment was so impressing that scientists believed that
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Langevin's method is an effective and independent new method
though the assumptions on the irregular force were somewhat
baffling. In the early 1920s, Wiener studied the features of Brow-
nian motion and built the foundation for correctly understanding
the meanings of Langevin's assumptions [36]. In the early and
middle 1940s, It6 introduced rigorous definition of the Itd calculus
and therefore clarified that the Langevin's forces could be mod-
elled by the mathematical white noise [8,9]. In the early 1960s,
Stratonovich came up with the physical interpretation of the white
noise [35].

The methodology originated from Einstein, along the path of
Einstein-Fokker-Planck-Kolmogorov might be referred to as the
phenomenological tradition in the studies of stochastic dynamical
systems. On the other hand, in the methodology originated from
Langevin, along the path of Langevin-Wiener-It6-Stratonovich,
may be referred to as the physical tradition in stochastic dynamics
[14,15].

The cross of the phenomenological tradition and the physical
tradition consists a reasonable starting point for modern studies
on stochastic systems. In the early 1950s, the random vibration
theory, a branch of stochastic dynamics, was developed gradually
as an independent branch of engineering science [4], and then was
applied to different engineering disciplines such as civil, me-
chanical, aeronautics and aerospace, and marine and offshore
engineering, etc. [27,28,30]. Till the early 1990s, the theory and
pragmatic approaches for random vibration of linear structures
were well developed. However, for nonlinear systems, despite
great efforts devoted since 1960s, including a variety of methods
such as the stochastic linearization method, equivalent non-line-
arization method, stochastic averaging method, cumulant-neglect
closure method, path-integration method, Hamiltonian formula-
tion and so on [11,27,28,38,39], there are still great challenges for
the non-stationary response analysis of general nonlinear dyna-
mical systems, particularly for MDOF systems [31,33,7]. Under
such background, in early this century, Li and Chen found that the
principle of probability preservation provides a unified logic
foundation for investigating the randomness propagation in sto-
chastic dynamical systems. Based on the clarification of the prin-
ciple of probability preservation, especially from the state de-
scription and random event description, a new family of general
probability density evolution equation (GPDEE) was developed
[16-18], which could secure the randomness propagation in a
dynamical system. Actually, this investigation reveals that it is just
the state evolution of a physical system induced by the physical
laws resulting in the probability density evolution of the corre-
sponding stochastic system [19]. This understanding or new
finding therefore established a straightforward relationship be-
tween general physical systems and the corresponding stochastic
systems.

Owing to the above background, this paper contributes to a
summary upon the basic theoretical foundation of the probability
density evolution method and recent developments including its
extension to general physical systems and even probability dis-
sipative systems. Several engineering applications are investigated
for illustrative purposes, including the dynamic reliability assess-
ment of controlled structures with fractional derivative viscoe-
lastic dampers and the stability analysis of structures under dy-
namic loading, respectively.

2. Theoretical foundation of probability density evolution
method

The principle of probability preservation can be stated as fol-
lows: if the random factors involved in a stochastic system are
retained, then the probability will be preserved in the state

evolution process of the system [20]. In order to clarify the prin-
ciple, let us start with the investigation on a transform of a random
function.

Let w be a basic random event and X (w) be a continuous
variable with probability density function (PDF) py (x), namely

Pr{X(w) € (x, x + dx)} = dPr{w} = py(x)dx 1

where Pr{-} is the probability measure.
Assume there exists a one to one mapping from X to Y, that is

fiY=fX) )
then the PDF of Y will be

d
py®) = pﬂfﬂy)}%

3
Obviously, the above equation could be converted to
py(dy = pxy®)dx )
Noticing that
Pr{Y(m) € v,y + dy)} = dPr{w} = py(y)dy ®)
it is evident that
Pr{Y(w) e (y,y + dy)} = Pr{X(w) € X, x + dx)} = dPr{w} 6)

This means that, in a mathematical transform, the probability
measure will be preserved since the random events keep un-
changed. This statement reveals the principle of probability pre-
servation. The principle is universally applicable to generic sto-
chastic systems.

For a general multi-degree-of-freedom (MDOF) system, the
basic equation of motion will be

M@X + CapX + £, X) = TE(D) )

where n = (n;, 7y, ..., 15,) are the random parameters involved in
the physical properties of the system with known joint PDF;
X, X, X are the accelerations, velocities and displacements of the
system, respectively; M, C are the mass and damping matrices of
the system; f(.) is the nonlinear restoring force vector; I is an
ng-dimensional column vector and &(t) is a stochastic excitation.

For general stochastic processes, some mathematical re-
presentations, e.g., the Karhunen-Loéve decomposition [29] or the
spectral representation method [34], can be adopted such that the
excitation could be represented by a random function

O =¢E D ®

where ¢ = (&, &, ..., &s,) is a set of independent random variables
with known joint PDF.
For notational clarity, denoting

O =(1.8) = (1 Myr +wor Ny Gt Car s Gs) = (61, O, ..., 65) ©)

in which s = s; + s; is the total number of the basic random vari-
ables involved in the system, then Eq. (7) can be rewritten into

M@®)X + CO®X + f©, X) =F©, t) (10)

where F(©, t) =T£(, t).

Eq. (9) is a general stochastic differential equation in which all
the randomness from the initial conditions, excitations and system
parameters is involved and exposed in a unified manner.

If, besides the displacement and velocity, other physical quan-
tities Z(t) = (&4, %, ..., Zm) of the system are also interested, the
following relationship holds:

Z(t) = YIX(t), X(1)] an

where ¥ denotes the operator that converts the state vector to the
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