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a b s t r a c t

The first part of the present investigation focuses on the formulation of a novel stochastic model of
uncertain properties of media, homogenous in the mean, which are represented as stationary processes.
In keeping with standard spatial discretization methods (e.g., finite elements), the process is discrete. It is
further required to exhibit a specified mean, standard deviation, and a global measure of correlation, i.e.,
correlation length. The specification of the random process is completed by imposing that it yields a
maximum of the entropy. If no constraint on the sign of the process exists, the maximum entropy is
achieved for a Gaussian process the autocovariance of which is constructed. The case of a positive process
is considered next and an algorithm is formulated to simulate the non-Gaussian process yielding the
maximum entropy.

In the second part of the paper, this non-Gaussian model is used to represent the uncertain friction
coefficient in a simple, lumped mass model of an elastic structure resting on a frictional support. The
dynamic response of this uncertain system to a random excitation at its end is studied, focusing in
particular on the occurrence of slip and stick.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The modeling of uncertain geometric and/or material proper-
ties as random variables, stochastic processes, or random fields has
received significant attention in the last 2 decades, e.g., see
[4,7,8,14] for discussion and some methods review. A key challenge
in using such models in practical situations is the often dramatic
lack of information available on the uncertainty. More specifically,
the mean value of the geometric/material property considered is
generally believed to be known from past experience and/or
available data. However, even the level of uncertainty, e.g., stan-
dard deviation, is often less clearly known and may in fact be
considered as a variable in a parametric study. Sometimes, an
upper and/or lower bound may also be known because of an ac-
ceptance/rejection test carried out on all samples. However, more
detailed information is very often not available.

This limited data does not permit the analyst to build a specific

probabilistic model, he/she is then forced to make additional as-
sumptions. This perspective has led [11,12] to propose that the
stochastic description of the uncertainty model be derived by
maximizing the statistical entropy under constraints representing
the true knowledge on the stochastic model. The maximization of
the entropy leads to a maximum spread of the uncertainty (con-
sistently with the constraints) in the tail of the distribution and
thus to the consideration of “wide-spread” uncertainty that pro-
vides a good perspective on the effects of variations of the system
properties, even those that are “far” from the mean. Thus, this
approach, also referred to as the nonparametric stochastic mod-
eling approach, requires only partial knowledge of the system
uncertainty complemented by the single assumption of max-
imization of entropy.

In its original formulation [11,12], the nonparametric stochastic
modeling approach was used for characterization of the mass,
damping, and stiffness matrices of reduced order/modal models,
not to the detailed modeling of any specific property such as mass
density or Young's modulus. Such a characterization was carried
out in later extension [13] to matrix-valued fields focusing in
particular on the modeling of the elasticity tensor of random
media.
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The present effort complement this work by addressing the
modeling of scalar random properties, of variable or constant sign
and homogenous in the mean, of media as stationary processes. In
keeping with standard spatial discretization methods (e.g., finite
elements), the process is discrete. The proposed modeling relies on
the specification of only the mean and standard deviation of the
property as well as on a global measure of the correlation, i.e., a
correlation length. The maximization of the entropy then provides
the description of the process consistent with this prescribed
information.

The above stochastic modeling technique will be exemplified
here on a property seldom considered and yet exhibiting well
known uncertainty, i.e., friction. When two deformable bodies are
in extended contact with each other, as in joints, turbomachinery
blade friction dampers, brakes, etc., the coefficient of friction be-
tween them must be defined over the contact zone, i.e., as a
spatially varying property which governs the occurrence of stick,
microslip, or macroslip (e.g., see [1,3,9,10], and references therein).
After an appropriate spatial discretization of the contact zone, it
becomes then necessary to specify the coefficient of friction at a
set of discrete locations. The uncertainty in the values of this
coefficient resulting from unknown spatial variations of rough-
ness, temperature, composition, etc. then calls for the stochastic
modeling considered in the first part of the paper. To demonstrate
this application and presents a first perspective on this problem, a
simple dynamic model of this contact problem is adopted here as a
cascade of 5 oscillators with Jenkins friction elements. The effects
of uncertainty in the coefficients of friction on the dynamic re-
sponse of this system is then studied.

2. Maximum entropy discrete process

2.1. General derivation

Let Xn denote a discrete stationary process indexed by the set of
all the negative and positive integers. Further, let
n I l l u, 1, ,∈ = { + … } and define the random vector
X X X Xl l u

T
1= [ … ]+ where T denotes the operation of matrix/vector

transposition. Then, the entropy S of X is defined as

⎡⎣ ⎤⎦S E p x p x p x dxln ln 1X X X( ) ( )∫≡ − ( ) = − ( ) ( ) ( )Ω

where E[.] denotes the operation of mathematical expectation and
Ω is the domain of support of the values of the process. If no
signature constraint is enforced, both positive and negative values
of the process are allowed and thus

x x x, , , , , , 2l l u1{Ω = ( … ) ∈ (−∞ ∞) × (−∞ ∞)… × (−∞ ∞)}⋅ ( )+

If a positive sign of the process is required,

x x x, , , 0, 0, 0, 3l l u1{Ω = ( … ) ∈ [ ∞) × [ ∞)… × [ ∞)}⋅ ( )+

In Eq. (1), p xX ( ) denotes the probability density function of the
random vector X evaluated at a realization point x. Since Xn is
stationary, its joint probability density functions satisfy the usual
independence under a uniform shift along I, e.g.,

p x p xX Xn n p
( ) = ( )+

and

p x y p x y, , 4X X X Xn m n p m p
( ) = ( ) ( )+ +

for every n, m, nþp, and mþp belonging to I.
It is desired here to determine the probability density function

p xX ( ) which maximizes the entropy, Eq. (1), under the constraints
that:

(i) the total probability is one, i.e.,

p x dx 1 5X∫ ( ) = ( )Ω

(ii) the mean and variance are given and constant (since the
process is stationary)

x p x dx n I 6n X X∫ μ( ) = ∈ ( )Ω

x p x dx n Ifor 7n X X X
2 2∫ μ σ( − ) ( ) = ∈ ( )Ω

(iii) a correlation length is given. Two such measures are [6,13]

L K m K/ 0
8m

XX XX0
1

∑= ( ) ( )
( )=

∞

and

L m K m K m/
9m

XX
m

XX1
0 0

∑ ∑= ( ) ( )
( )=

∞

=

∞

where K mXX ( ) is the stationary autocovariance function. It is de-
fined as

K m n n m n I, for any 10aXX XXΓ( ) = ( + ) ∈ ( )

where

⎡⎣ ⎤⎦n n m E X X

x x p x dx

,

10b

XX n X n m X

n X n m X X∫
( )( )

( ) ( ) ( )
Γ μ μ

μ μ

( + ) = − −

= − − ( )Ω

+

+

The series involved in Eq. (8) and (9) will be truncated to finite
sums for m¼0 to mmax and thus the constraints can be written as

a s n n m n, 0 for any
11m

m

m m XX
0

max

∑ Γ ( + ) =
( )=

where

s K msgn 12m XX( )= ( ) ( )

⎡⎣ ⎤⎦a L m m1 1 0, , 13m m0 0 max( ) δ= + − ∈ ( )

with ijδ the Kronecker symbol, for the correlation length L0 while
for L1

⎡⎣ ⎤⎦a L m m m0, 14m 1 max= − ∈ ⋅ ( )

For the optimization of the entropy, Eqs (5)–(7), (11) can be
written in the generic form

f x p x dx C 1, 2, 3, 4 15in in X i∫Ξ ≡ ( ) ( ) − = ( )Ω

where

f x x 16n n n X1 μ( ) = − ( )

f x a s x x
17

n
m

m

m m n X n m X2
0

max

∑ μ μ( ) = ( − ) ( − )
( )=

+

f x x fand 1 18,19n n X3
2

4μ( ) = ( − ) = ( )

with C C 01 2= = , C X3
2σ= , and C 14 = .

Then, the maximization of the entropy, Eq. (1) under the con-
straints of Eqs (15)–(19) can be accomplished in the Lagrange
multiplier framework and yields
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