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a  b  s  t  r  a  c  t

The  present  study  introduces  a  design  wave  method  for estimating  the extreme  horizontal  slow-drift
motion  of moored  floating  offshore  platforms  under  extreme  conditions.  Here,  the  design  wave  refers
to an  irregular  incident  wave  of  short  duration  that  induces  the  extreme  response  of  the  desired  return
period.  The  present  method  is  composed  of the following  four  steps:  linearization  of the  dynamic  sys-
tem,  probabilistic  analysis  of  the second-order  Volterra  series,  generation  of  the  irregular  design  waves,
and the  fully-coupled  nonlinear  simulations.  For  generating  the  design  waves,  two  different  condition-
ing  methods  are  presented  and  compared:  the conditioning  of the  extreme  response  amplitude  and
the  conditioning  of  the most  likely  extreme  response  profile.  The  procedure  was applied  to  a deep-
water  semi-submersible,  and  the  results  appeared  to  be promising  compared  to the  full-length  nonlinear
simulations.

© 2017  Published  by Elsevier  Ltd.

1. Introduction

In the design of mooring systems for floating offshore struc-
tures under ultimate limit state (ULS) conditions, prediction of the
vessel offset under severe sea states is essential. Especially, the
slow-drift motion of the floater is crucial to the mooring lines due
to its significant contribution to the overall offset. However, the
slow-drift motion is governed by various sources of nonlinearity
including the coupling effects between the floater and the moor-
ing lines, and the nonlinear exciting, restoring and damping forces,
which necessitates direct nonlinear time-domain simulations for
accurate prediction. Many studies have been conducted over sev-
eral decades which have proven that numerical simulations can
successfully model the slow-drift motion of moored floaters [1–3].

Despite the success of numerical modeling, estimating the
extreme value of slow-drift motion from simulation remains a
challenge. This is because the statistical behavior of the slow-
drift motion is generally unknown prior to the simulations. Even
if the random sea is well-described with a Gaussian model, the
second-order wave loads that excite the slow-drift motion is strictly
non-Gaussian [4], and the nonlinearities of the dynamic system fur-
ther complicate the response statistics. Hence, a massive amount of
numerical simulation is required to obtain the converged probabil-
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ity distribution, especially for the tail region where extreme values
lie. When the design return period is very long, as is generally the
case for offshore structures, the computational burden becomes too
heavy to be handled by direct nonlinear simulations.

Similar issues have been raised in ship design when estimating
nonlinear responses like the vertical bending moment. To resolve
this issue, the so called ‘design wave method’ was first used in ship
design. The main concept of the design wave method is to per-
form the nonlinear simulations with waves of short time series
that induce the design responses of a much longer return period.
In the classical design wave method, the nonlinear ULS response
is calculated by using the regular design wave whose amplitude is
determined by dividing the linear ULS response by the peak value
of the linear response amplitude operator (RAO). The period is then
set to the peak period of the RAO. This often leads to unphysi-
cally steep waves, however, and the assumption of extreme events
occurring repeatedly and regularly is also considered to be unreal-
istic. Several studies developed irregular design wave methods to
address those problems. Tromans et al. [5] introduced the ‘New
Wave’ model, which is the expected irregular wave profile of a
conditioned extreme amplitude, and Friis-Hansen and Nielson [6]
extended this model to include the instantaneous frequency. Later,
Adegeest et al. [7] applied this model to derive the most likely
profile of the extreme linear response and suggested using the cor-
responding irregular wave of a limited number of cycles in the
nonlinear simulations. Another famous approach is the ‘Critical
Wave Episodes’ model introduced by Torhaug et al. [8], where the
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critical wave episodes are identified based on the time histories of
the linear simulations. More recently, Jensen [9] adopted the first-
order reliability method (FORM) in generating the irregular design
wave to deal with highly nonlinear problems, and Alford [10] and
Kim [11] developed the ‘Design Loads Generator’, which calculates
the non-uniform phase distribution rather than one specific phase
set to account for the randomness of the extreme events.

In this study, a new design wave method for estimating the
extreme nonlinear slow-drift motion of moored offshore platforms
is introduced. Like the previous methods described above, the new
method assumes that the slow-drift motion from the linearized
dynamic system, which can be represented as a second-order
Volterra series, behaves analogously to that of a nonlinear dynamic
system. More specifically, it is assumed that the irregular wave
inducing an extreme response from the linearized dynamic system
is likely to induce the extreme response of the same exceedance
level from the nonlinear dynamic system. The method is composed
of the following four steps: linearization of the dynamic system,
probabilistic analysis of the second-order Volterra series, genera-
tion of the irregular design waves, and the fully-coupled nonlinear
simulations. Two different conditioning methods were compared
in generating the irregular design waves. Details are described in
the following sections.

2. Background theory

When simulating the motion response of moored offshore plat-
forms under severe sea states, the slow-drift motion is often
decoupled from the wave-frequency motion. This is done to
enhance computational efficiency because the low-frequency com-
ponent dominates over the wave-frequency component and the
dynamic interference between them is small. Hence, the wave-
frequency motion is not considered in the present model. In the
fully coupled platform-mooring lines dynamic simulation, the gov-
erning equation for the slow-drift motion of the platform is given
as follows.

(M + MA) ẍ + BWD(t)ẋ + CHx + fV(ẋ, t) + fM(x, ẋ, ẍ, t) = f(2)
W (t)

(1)

In Eq. (1), x is the nonlinear slow-drift motion vector, and M,
MA and CH are the inertia matrix, zero-frequency added mass
matrix, and the hydrostatic restoring coefficient matrix, respec-
tively. The time-varying wave-drift damping coefficient matrix
converted from the wave-drift damping quadratic transfer function
(QTF) is represented by BWD(t). The viscous drag force acting on the
slender members of the platform is fV, and fW

(2) is the second-order
difference-frequency wave load converted from the corresponding
QTF. Finally, fM represents the mooring line force acting on the plat-
form, resulting from a fully nonlinear simulation of the mooring line
dynamics.

As mentioned in the introduction, the first step of the present
design wave method is to linearize the dynamic system, i.e. equa-
tion of motion, which enables us to represent the slow-drift motion
with a second-order Volterra series. This is beneficial because the
second-order Volterra series can equivalently be represented with
a frequency-domain QTF, and the probability distribution can be
obtained analytically. The linearized equation of motion is given
by

(M + MA) ẍL + BẋL + (CH + CM) xL = f(2)
W (t) (2)

where xL is the slow-drift motion vector from the linearized
dynamic system, and is termed hereafter the linearized slow-drift
motion. The linearized total damping coefficient matrix and the
mooring line restoring coefficient matrix are represented by, B and
CM, respectively. The damping matrix B should account for all the

sources of damping in Eq. (1), including the wave-drift damping and
the viscous drag forces on the platform and mooring lines. Never-
theless, precise tuning of the damping coefficients is not necessary
in the present design wave analysis, which will be explained later.
From Eq. (2), the slow-drift motion QTF H(ω1, ω2) is given by

H(ω1, ω2) =
[
−(ω1 − ω2)2 (M + MA) + i(ω1 − ω2)B + (CH + CM)

]−1
HF(ω1, ω2)

(3)

where HF is the QTF for the difference-frequency wave loads.
To simplify the problem, it is assumed that the sea state is long-

crested and the wave incident direction is parallel to the surge
motion of the floater. Then, the incident wave elevation at the
motion reference point can be represented as

�(t) =
N∑
j=1

Aj cos
(
ωjt + εj

)
(4)

Aj =
√

2S(ωj)�ω (5)

where Aj , ωj , and εj are the amplitude, frequency, and phase of
individual discretized wave components respectively, and N is
the number of discretized wave components. The incident wave
spectrum is S(ω), and �ω is the increment between the discrete fre-
quencies. The consequent linearized slow-drift surge motion from
Eq. (2) and its response spectrum can be represented as

xL(t) =
N∑
j=1

N∑
k=1

AjAk |H1(ωj, ωk)| cos
[

(ωj − ωk)t + (εj − εk) + �1(ωj, ωk)
]

(6)

SxL(ω) = 8

∫ ∞

0

|H1(ω − �, �)|2S (|ω − �|) S (|�|)d� (7)

where H1 and 	1 are the surge motion complex QTF and its phase,
respectively.

For the linearized slow-drift motion xL(t), which is assumed
ergodic, the probability distributions of both the response and its
extreme values can be readily estimated by solving an eigenvalue
problem given by [4,12]∫ ∞

−∞
K (ω1, ω2) j(ω2)dω2 = 
j j(ω1) (8)

K (ω1, −ω2) =
{√

S(|ω1|)S(|ω2|)H1 (ω1, ω2) ,  ω1ω2 ≥ 0

0 , ω1ω2 < 0
(9)

where 
j and  j are the eigenvalue and eigenfunction, respectively,
of the Hermitian kernel K(ω1, ω2). Then, the first four statistical
moments of xL(t) are given by

mxL =
N∑
j=1


j, �xL =
N∑
j=1

2
j
2 (10)

˛3, xL = E

[
(x − mxL)

3

�xL3

]
= 1
�xL3

N∑
j=1

8
j
3 (11)

˛4, xL = E

[
(x − mxL)

4

�xL4

]
= 3 + 1

�xL4

N∑
j=1

48
j
4 (12)

where mxL , �xL , �3,xL, and �4,xL are the mean, standard deviation,
skewness, and the kurtosis of xL(t), respectively. Using these four
statistical moments, a mapping function g, that transforms a stan-
dard normal process u(t) to xL(t) can be defined as follows [13].
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