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a b s t r a c t

An analytical approach based on generalized harmonic wavelets (GHWs) for determining the response
evolutionary power spectral density (PSD) of single-degree-of-freedom linear structural systems sub-
jected to non-stationary stochastic excitations is developed. Specifically, utilizing a periodized GHW
transform, applying a Galerkin scheme, and relying on the orthogonality properties of the GHWs, an
analytical relationship between wavelet coefficients of the system response and of the excitation is
derived. It is shown that in comparison with a recently developed GHW based excitation–response re-
lationship, which is based on a “locally stationary” stochastic process representation and employs lo-
calized in time monochromatic functions, the herein developed relationship exhibits enhanced accuracy
for cases of relatively flexible systems and/or for systems with relatively low damping where the related
impulse response function cannot be assumed to be short-lived. Pertinent numerical examples and
Monte Carlo simulation data are included as well for demonstrating the reliability of the approach.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to randomness related to the system parameters/proper-
ties, and/or to the environmental loads, structural system re-
sponses exhibit random characteristics as well. Clearly, this ne-
cessitates appropriate stochastic modeling of the excitations and/or
system parameters, as well as the utilization of potent tools from
random vibration theory for determining the stochastic response of
such systems. Nevertheless, in many cases engineering structures
are subject to excitations that exhibit strong variability in both the
time and the frequency domains. In this regard, well-established
standard tools from random vibration theory are not capable, in
general, of treating such cases adequately, and thus, developing
techniques for efficient joint time–frequency system response
analysis remains a sustained challenge.

Modern wavelet analysis, originated from the field of explora-
tion geophysics in 1980s [1], is currently regarded as one of the
most potent signal processing tools and has been applied in diverse

fields of engineering such as dynamical systems and vibrations [2],
joint time–frequency analysis [3], evolutionary power spectral
density (PSD) estimation [4], structural system stochastic response
determination [5], system parameter identification [6], and da-
mage detection applications [7]; see also [8] for a comprehensive
state-of-the-art review. Note that in the aforementioned applica-
tions the capabilities of the wavelet transform for joint time–fre-
quency analysis provide with enhanced information regarding the
signal’s time-dependent frequency content; this is not available by
merely considering the time domain only, or the frequency domain
only, independent of one another.

In this regard, Basu and Gupta [9–11], Tratskas and Spanos [5],
Spanos and Kougioumtzoglou [12,13] and Kong et al. [14] con-
stitute some indicative contributions to this field. Specifically,
based on the assumption that the wavelet transform of a stochastic
excitation can be represented as a multiplication of two sinusoidal
functions, Basu and Gupta [9] derived a relationship between the
PSDs of the excitation and of the system response; this was done in
conjunction with the modified Littlewood–Paley wavelet; see also
[10,11]. Further, by extending the concept of the frequency re-
sponse function to the joint time–frequency domain, Tratskas and
Spanos [5] showed that the wavelet coefficients of the system re-
sponse can be determined by applying a convolution operator to
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the wavelet coefficients of the excitation and the wavelet based
impulse response function at each scale. Note, however, that the
response PSD determination relied on a Monte Carlo simulation
(MCS) treatment where the ensemble average of the system re-
sponse wavelet coefficients needed to be considered.

Recently, based on a locally stationary representation of non-
stationary stochastic processes [15] via generalized harmonic wa-
velets (GHWs) [16], Spanos and Kougioumtzoglou [12,13] (see also
[17]) derived a GHW-based relationship between the excitation
and the response PSDs. Based on certain assumptions, an im-
portant feature of the relationship is that the response PSD value at
a specific time–frequency band depends on the excitation PSD
value corresponding to the same time–frequency band only. In the
ensuing analysis, this is referred to as the locally stationary ap-
proach and has been shown to provide with results of satisfactory
accuracy given that the system under consideration is relatively
stiff, and/or has relatively high damping, or in other words, its
impulse response function is short-lived.

In the present paper, a novel wavelet based relationship be-
tween the excitation and the system response PSDs is derived that
can be construed as a generalization of the locally stationary ap-
proach. In the herein derived relationship the assumption of local
stationarity is removed, and thus, enhanced accuracy is exhibited
in cases of lightly damped systems as well. To this aim, first, per-
iodized generalized harmonic wavelets (PGHWs) are presented
and utilized as an orthogonal basis for expanding the excitation
and the system response functions, and ultimately, for solving the
differential equation of motion. In this manner, wavelet coefficients
corresponding to the deterministic system response at different
scales are obtained via an analytical closed-form formula. Finally,
besides obtaining the deterministic response of the system by
employing a fast PGHW reconstruction algorithm, a direct excita-
tion–response (input–output) PSD relationship is established by
invoking a recently derived GHW based PSD estimation formula.
Pertinent Monte Carlo simulation data are included as well de-
monstrating the enhanced accuracy exhibited by the proposed
method as compared with the locally stationary method for a
certain class of problems.

2. Mathematical formulation

Wavelet based solution of differential/integral equations has
been the focus of research for over twenty years, e.g. [18]. In this
regard, a wavelet-based solution of differential equations relies
heavily on the determination of the “connection coefficients” re-
presenting the interaction between wavelets (or derivatives/in-
tegrals of wavelets) at different scales and translation levels. In-
dicatively, connection coefficients have been obtained in [19].
Further, Chen et al. [20] (see also Zhang et al. [21]) obtained the
connection coefficients of Daubechies wavelets on a finite interval.
As far as HWs are concerned, connection coefficients were first
obtained by Cattani [22] and later employed in a collocation so-
lution of the Fredholm integral equation of the second kind [23,24].
Further, HWs were also used in the numerical solution of Burgers
equation [25].

In this section, a GHW approach is developed for solving the
deterministic/stochastic differential equation of motion of a linear
oscillator. In this regard, based on GHW expansions of the system
response and excitation a set of algebraic equations is derived for
determining the system response wavelet coefficients. The ad-
vantages of implementing such a wavelet expansion scheme relate
to the sparse, in general, representation of the involved functions
and differential/integral operators as well as to the existence of
efficient numerical algorithms for the forward and the inverse
wavelet transforms.

Nevertheless, one main difficulty in employing a GHW expan-
sion is that GHW do not form a set of orthogonal basis functions on
a finite interval. Therefore, either periodization of wavelets needs
to be implemented or the wavelet basis functions at the bound-
aries/initial points need to be modified to obtain orthogonal wa-
velet bases. In the ensuing analysis, the former solution is adopted
and the signal finite time interval is treated as a fundamental
period of an infinite in time periodic process. For this purpose, first,
the periodized generalized harmonic wavelet (PGHW) is presented.
Further, PGHW connection coefficients are derived in an analytical
form and utilized for obtaining a direct relationship between wa-
velet coefficients of the system response and of the excitation.
Next, for the purpose of reconstructing the deterministic system
response in the time domain from its wavelet coefficients fast
forward and inverse wavelet transform algorithms based on the
Fast Fourier Transform (FFT) can be utilized. Finally, a direct re-
lationship between the excitation and the system response wave-
let-defined PSDs is derived.

2.1. Periodized generalized harmonic wavelets

2.1.1. Basic formulation
The periodization of the GHW can be expressed as (e.g.[14,26])
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In Eq. (2) m n,i i( )and k N N n m0, 1, , 1t t= ⋯ = ( − ) − denote the
scale and translation indices, respectively; and i is the subscript for
the i-th scale. In the following, a uniform constant bandwidth is
chosen for all scales under consideration, i.e., n m ni i j− = −
m n m i j N N N n m, , 1, 2, , , /2j = − = ⋯ = ( − )Ω Ω . Further, T t N0 Δ= ⋅
is the time duration of the discretized signal, where N is the total
number of sampling points; and T2 / 0Δω = π .

Next, taking into account Eq. (2) and noticing that
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Further, considering the Poisson formula yields
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where δ (⋅) is the Dirac delta function. Focusing on Eq. (3), changing
the order of the summation and the integral operators, and taking
into account Eqs. (1) and (4) yields an expression for the PGHW in
the time domain of the form
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Obviously, applying the Fourier transform on Eq. (5) yields an
expression for the PGHW in the frequency domain, i.e.,
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