
Applied Ocean Research 69 (2017) 76–86

Contents lists available at ScienceDirect

Applied  Ocean  Research

journal homepage: www.elsevier.com/locate/apor

Modelling  of  the  sea  surface  elevation  based  on  a  data  analysis  in  the
Greek  seas

Nikos  T.  Martzikos a,∗, Takvor  H.  Soukissian b

a Laboratory of Harbour Works, School of Civil Engineering, National Technical University of Athens, 5, Heroon Polytechniou Str., 157-80, Zografos, Greece
b Hellenic Centre for Marine Research, Institute of Oceanography, 46.7 km Athens-Sounion Ave, 19013 Anavyssos, Greece

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 22 May  2017
Received in revised form 22 October 2017
Accepted 23 October 2017

Keywords:
Stochastic processes
Sea surface elevation
Time series forecasting
ARMA model
Wave energy

a  b  s  t  r  a  c  t

The  theory  of time  series  and  especially  of  the  autoregressive  moving  average  (ARMA)  models  is  used  for
modelling the  sea  surface  elevation.  Sea surface  elevation  is usually  recorded  by wave  measuring  devices,
but rarely  has  it  been  analysed  or analytically  modelled.  Except  other  traditional  applications,  forecasting
of  the  wave  characteristics  in  the  short-term  time  scale  is  important  for the  optimization  of  the  efficiency
of the  wave  energy  converters.  The  main  objective  of  this  work  is, by  using  the Box-Jenkins  methodology,
the  analytical  description  and forecasting  of  the  sea-surface  elevation  process.  A  sample  of  50825  records
of sea  surface  elevation  was  collected  by four different  deep  water  locations  at  the  Aegean  and  Ionian
seas  in  Greece  from  2000  to 2011.  Analytical  ARMA(p,q)  models  were  fitted  to  a  variety  of potential
parameter  combinations,  i.e. p, q = {0,1,2,3,4,5}  for  the  examined  time  series  in  order  to  identify  the  most
suitable  ARMA  model  for  this  purpose.  The  diagnostic  and  suitability  check,  as well  as the  selection  of
the  best  model  is carried  out  according  to the Akaike  and  the  Bayesian  information  criteria.  The  results
obtained  suggest  that the ARMA(2,5)  model  is  the  optimum  choice  for the  representation  of  the  sea
surface  elevation.  A further  attempt  has  been  made  in  order  to highlight  a possible  relation  between  the
best  ARMA  models  and  various  spectral  characteristics  such  as  the  significant  height,  the spectral  peak
period,  the  mean  wave  direction  and  the  spectral  bandwidth  parameters  of  the corresponding  sea-state.
Finally,  based  on  the  best-fit  ARMA  model,  a forecast  of  free  surface  elevation  is  carried  out, confirming
the  model  sufficiency  by estimating  the  forecast  errors.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The assessment and modelling of prevailing wave conditions
in a sea area is of interest for ship design, harbour activities, and
operational service of platforms. Wave energy applications and the
optimal efficiency of the wave energy converters are also directly
related to the forecasting of sea surface elevation (sse). Wave cli-
mate and sea state parameters such as the significant wave height,
the spectral peak period and the mean wave direction are of great
importance in marine structural design and ocean engineering.
Therefore, several studies have analysed and modelled time series
of relevant wave parameters at different locations. The majority of
them focuses on wave spectral characteristics and in particular on
the significant wave height. However, time series of sse has rarely
been analysed.
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The sea surface elevation, denoted as � (t),  at a fixed position of
the free surface, is represented as a stationary, ergodic and Gaussian
stochastic process of the following form:

�(t; ˇ) =
∞∑
i=1

Aicos[2�fit + ϕi(ˇ)], (1)

where Ai is, at each frequency, Rayleigh distributed and denotes
the amplitude, ϕi

(
ˇ
)

is the phase, which is modelled as a random
variable uniformly distributed in [0, 2�], fi is the frequency of small
amplitude components of (1), i.e. fi = 1/Ti, where Ti is wave period,
and i = 1, 2, . . .;   ̌ is a choice variable. See also [1] and [2].

Each particular record � (t) of the free sse is considered as one of
the infinite possible realizations that could occur in the same place
and under the same experimental conditions. Since the stochastic
process which is represented by relation (1) is ergodic, the statis-
tical analysis of the stochastic process is practically feasible from
only one realization of it. A realization of �(t; ˇ) is a set of records
� (t) at every time instant t. In practice, this realization consists a
discrete-time time series, i.e. � (ti) = � (t1) , � (t2) , . . .,  � (tn).

https://doi.org/10.1016/j.apor.2017.10.008
0141-1187/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.apor.2017.10.008
http://www.sciencedirect.com/science/journal/01411187
http://www.elsevier.com/locate/apor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apor.2017.10.008&domain=pdf
mailto:nmartzikos@central.ntua.gr
https://doi.org/10.1016/j.apor.2017.10.008


N.T. Martzikos, T.H. Soukissian / Applied Ocean Research 69 (2017) 76–86 77

According to Chatfield [3], Hamilton [4] and Wei  [5], time-series
analysis involves the evaluation of the properties of the underlying
probability model from the observed time series. In the statisti-
cal analysis of time series there exist analytic models that provide
a parsimonious description of a stationary stochastic process in
terms of polynomials. The most fundamental of these models are
the moving average (MA) and the autoregressive (AR) model.

Let Xt, t = 1, 2, . . . denote a time series; then, an autoregressive
model AR(p) of order p, is of the form

Xt= c+˛1Xt−1  + ˛2Xt−2+. . .+˛pXt−p + εt, (2)

where c is a constant, �1, �2, . . .,  �p, are parameters to be estimated
and εt is a zero-mean white noise process. From Eq. (2) it is evident
that the current value of the variable Xt is a linear combination of
past values Xt−1, Xt−2, . . .,  Xt−p of the same variable. Using the
backshift operator B, relation (2) can be written as follows:

Xt= c +
p∑
i=1

˛iB
iXt + εt. (3)

In order the model (2) to be stationary in the wide-sense, each

root zi of the polynomial zp −
p∑
i=1

˛iz
p−i should satisfy the condition

|zi|< 1.
The moving average model MA(q) of order q is defined as fol-

lows:

Xt = � + εt + ˇ1εt−1 + ˇ2εt−2 + . . . + ˇqεt−q, (4)

where � is the mean value of the time series, ˇ1, ˇ2, . . ....,ˇq are
parameters and εt are white noise process error terms; see also
Shumway and Stoffer [6]. In this case, the current value of the vari-
able Xt is a linear combination of past values forecast errors εt-1 ,
εt-2, . . .,  εt-q.

A mixed form that combines AR(p) and MA(q) refers to a
model with p autoregressive terms and q moving-average terms.
This model is usually in practice, more useful and efficient. The
mixed autoregressive moving average (ARMA) model of order
(p, q), known as ARMA(p,q) model, contains both AR and MA  terms
and is given by the following relation:

Xt= c+˛1Xt−1  + ˛2Xt−2+. . .+˛pXt−p + εt + ˇ1εt−1

+ ˇ2εt−2 +. . .+ˇqεt−q, (5)

where {εt} is a Gaussian white noise series with zero mean and
variance �2

z , and
{
˛i

}
,
{
ˇi

}
, i = 1, 2, . . .,  n, are constants (parameters

to be estimated).
The theory of time series analysis, and in particular of ARMA

models, is a useful tool for analysing, modelling and forecast-
ing wave data. Thus, it has received considerable attention in the
literature of ocean engineering for the last decades. Spanos [7] pre-
sented extensively the three different algorithms for AR, MA  and
ARMA models in order to simulate time series which are compat-
ible with a given power spectrum of ocean waves, also describing
their applicability to offshore engineering problems. Li and Karrem
[8] simulated the wave processes and wave height fluctuations of
given time histories by ARMA algorithms. Analysis of measured
water surface records in Sobey [9] suggested that sequences of
individual waves can reasonably be described as first order ARMA
processes. Guedes Soares and Fereira [10] used the Box – Jenk-
ins autoregressive models to simulate time series of significant
wave height. Stefanakos and Athanassoulis [11] and Ho, Yim [12]
applied ARMA models for the analysis, completion and simulation
of non-stationary time series of wave spectral parameters with
missing values. Another method, based on a different concept, was
presented in Özger [13]; the method combined artificial neural

networks, fuzzy logic and ARMA models and it was  employed for
significant wave height forecasting.

The aim of this work is, by using Box-Jenkins methodology [14],
to describe and model the time series of the sse � (t),  and identify
the most appropriate ARMA model. An additional issue of this work
is to examine any potential relation between the specific ARMA
models selected and the spectral parameters of the corresponding
sea-states, i.e. significant wave height HS, main direction �W, spec-
tral peak period TP, as well as the spectral bandwidth parameters ε
and 	.

An application of the modelling of � (t) is  related to the control
of specific type wave energy converters. Specifically, the efficient
forecast of the sse is directly connected to the optimization of the
efficiency of wave energy extraction (Fusco and Ringwood [15]).

The structure of this work is the following: in Section 2 the
main steps of the implemented methodology for the estimation
of an ARMA model are presented and discussed. In Section 3, the
wave data source is described and the statistical analysis of the cor-
responding sea-state spectral parameters is presented. In Section
4, the numerical results obtained in this work are provided and
analytically discussed. Finally, in Section 5 concluding remarks are
provided along with some suggestions for further research.

2. Methodology for building ARMA models for � (t)

2.1. Introduction

The best-fitting time series analytic model for the description
of the process of sse is investigated following the Box-Jenkins
methodology [14,16]; in this section, this method will be described
in brief. There are three main steps in developing a time series
model according to Box-Jenkins methodology: i) identification, ii)
estimation, and iii) validation. Provided that the examined time
series is zero-mean and covariance-stationary, the Wold decom-
position (or representation) theorem guarantees the existence of
an ARMA model for the approximation of the time series.

2.2. Identification

At the identification stage, the main aim is to determine if the
examined time series is stationary (in order for the Wold decom-
position theorem to be valid). Moreover, a time series may  be also
exhibit seasonality that should be also modelled. As a first step any
linear trend in the series should be removed. Both non-stationarity
and seasonality can be identified using the sample autocorrelation
function (ACF) of the time series, i.e.,


̂ (h) = �̂ (h)
�̂ (0)

, (6)

where

�̂ (h) = 1
n

n−|h|∑
t=1

(
xt+|h| − x̄

)
(xt − x̄) , − n < h < n, (7)

is the sample autocovariance function and

x̄ = 1
n

n∑
t=1

xt, (8)

is the mean value of the time series.
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