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a b s t r a c t

This paper is focused on the development of an efficient reliability-based design optimization algorithm
for solving problems posed on uncertain linear dynamic systems characterized by large design variable
vectors and driven by non-stationary stochastic excitation. The interest in such problems lies in the
desire to define a new generation of tools that can efficiently solve practical problems, such as the design
of high-rise buildings in seismic zones, characterized by numerous free parameters in a rigorously
probabilistic setting. To this end a novel decoupling approach is developed based on defining and solving
a limited sequence of deterministic optimization sub-problems. In particular, each sub-problem is for-
mulated from information pertaining to a single simulation carried out exclusively in the current design
point. This characteristic drastically limits the number of simulations necessary to find a solution to the
original problem while making the proposed approach practically insensitive to the size of the design
variable vector. To demonstrate the efficiency and strong convergence properties of the proposed ap-
proach, the structural system of a high-rise building defined by over three hundred free parameters is
optimized under non-stationary stochastic earthquake excitation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The benefits that can be achieved in terms of both performance
as well as cost reduction through the application of numerical
optimization to engineering problems are well known. In order to
apply these methods to the design of optimal structural systems
subject to environmental loads such as wind and earthquakes, the
inherently dynamic and aleatory nature of the system and loads
must be rigorously modeled. Indeed, it is well known that there is
considerable uncertainty not only in the external environmental
excitation but also in the parameters and models describing the
system [1]. Recently, considerable effort has been placed on de-
fining reliability-based/robust optimization approaches that de-
scribe the performance of the system in a rigorously probabilistic
and dynamic setting, e.g. [1–4], see also [2] for a review. The recent
interest in defining these approaches is a direct consequence of
the latest computational advances that have opened the door to
the possibility of solving problems that only recently would have

been considered intractable. A hurdle that has remained a chal-
lenge is the possibility of solving reliability-based design optimi-
zation (RBDO) problems that are characterized by large design
variable vectors. Indeed, of the methods so far developed, very few
have considered problems with more than a handful of free design
parameters [2]. This can be an important limitation as many
practical applications are characterized by large design variable
vectors, e.g. the design of typical multistory building systems. The
difficulty in efficiently solving reliability-based design optimiza-
tion, or robust optimization problems, with large design variable
vectors is primarily due to how this limits the possibility of effi-
ciently exploring how the probabilistic performance functions vary
as the design variable vector changes during the optimization
loop. Indeed, if the design variable vector has high dimensions,
then surrogate/metamodel-based approaches [2] tend to become
intractable as the exploration of the design space necessary to
build the surrogate/metamodel will require a prohibitively large
number of probabilistic performance evaluations. A similar curse
of dimensionality also affects methods based on augmenting the
uncertain vector with the design variables, as it becomes in-
creasingly difficult to identify the regions of the design space that
contain the optimal solutions. Another approach that has been

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/probengmech

Probabilistic Engineering Mechanics

http://dx.doi.org/10.1016/j.probengmech.2015.09.014
0266-8920/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. fax: þ1 734 764 4292.
E-mail addresses: smjs@umich.edu (S.M.J. Spence),

massimiliano.gioffre@unipg.it (M. Gioffrè), kareem@nd.edu (A. Kareem).

Probabilistic Engineering Mechanics 44 (2016) 174–182

www.elsevier.com/locate/probengmech
http://dx.doi.org/10.1016/j.probengmech.2015.09.014
http://dx.doi.org/10.1016/j.probengmech.2015.09.014
http://dx.doi.org/10.1016/j.probengmech.2015.09.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2015.09.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2015.09.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2015.09.014&domain=pdf
mailto:smjs@umich.edu
mailto:massimiliano.gioffre@unipg.it
mailto:kareem@nd.edu
http://dx.doi.org/10.1016/j.probengmech.2015.09.014


widely adopted for solving RBDO problems is that based on de-
coupling the inherently nested probabilistic analysis from the
optimization loop [5–8,1,2]. In general, this can only be approxi-
mately achieved and requires the sequential application of prob-
abilistic analysis followed by the resolution of an approximate
optimization sub-problem. The crucial point in these approaches is
the construction of the sub-problem that generally requires ad-
ditional information to be gathered on the local behavior of the
performance functions around the current design point, e.g.
through local random exploration or sensitivities. It is this phase
that generally becomes troublesome as the design variable vector
increases in size. In this paper a novel decoupling approach is
developed that is practically insensitive to the size of the design
variable vector. In particular, the methodology is specifically de-
veloped for high-dimensional uncertain linear dynamic systems
driven by stochastic excitation. As an example of such a system, a
case study is considered that focuses on the optimum design of the
structural system of a high-rise building subject to non-stationary
stochastic earthquake excitation.

2. Formulation of the optimization problem

The optimization problems that are pertinent to this research
may be posed in the following form:
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where x is an m-dimensional vector of deterministic parameters
defining the design of the system, e.g. the section sizes, W is a
deterministic and explicit (in terms of the design variable vector x)
cost function associated with the structural system, P fj are the
failure probabilities associated with the Nc reliability constraints
defining the performance of the system, P0j are the acceptable
failure probabilities defining the target reliability of the system,
while xi is the discrete set to which the ith design variable must
belong.

What makes the above outlined RBDO problem difficult to
solve are the reliability constraints of Eq. (3). Indeed, the evalua-
tion of the aforementioned constraints requires the calculation of
the failure probabilities P fj

given by
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where FjΩ is the failure domain of the failure event Fj within the
space of the uncertain parameters collected in the vector U (with
U indicating the random vector and u a realization), while p u( ) is
the joint probability density function of U. In this work the ran-
dom vector U describes all uncertainties involved in the system
(model and loading parameters). In other words the components
of the vector U represent the uncertain structural parameters and
the random variables used in the characterization of the stochastic
excitation. Therefore U will have high dimensions (order of
thousands) which excludes the possibility of using analytical ap-
proximations, such as first and second order reliability methods, in
the calculation of the probabilistic integral of Eq. (5) as they will
become computationally intractable [9]. This implies that Eq. (5)

must be evaluated using simulation methods and therefore
through repeated evaluation of the system response. For practical
dynamic systems, this fast becomes computationally cumbersome,
especially when it is observed that P fj is in general an implicit
function of x therefore hindering the calculation of the gradients
necessary if efficient gradient-based optimization methods are to
be used to solve the optimization problem.

3. Response estimation

3.1. Damage model

The failure events, Fj, of interest to this work may be written in
the following form:
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where dj is the damage measure associated with the jth reliability
constraint and defined as follows:
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where T is the duration of the event, Rj(t) is the structural response
process associated with the jth failure mode while Cj is a measure
of the capacity of the system in the jth failure mode. In particular,
Cj is directly related to the concept of fragility as defined in [10], i.e.
as the conditional probability of having a predetermined damage
state, DSj, given a certain response level r. Indeed, if the capacity Cj
is measured in terms of the response thresholds at which the
damage state associated with the jth reliability constraint occurs,
then the following holds:

P DS r P C cFragility 8DS j j j jj
= ( | ) = ( ≤ ) ( )

where rj¼cj. Therefore the distribution of Cj is simply given by the
fragility curve associated with the damage state of interest. The
relation of Eq. (8) illustrates how the damage ratio of Eq. (7), and
in particular Cj, can be modeled using the extensive fragility da-
tabases reported in [11] for a number of common structural and
non-structural building components.

By using the damage model of Eq. (7), a predefined damage
state will occur if dj is larger than 1. Therefore the following limit
sate function can be assumed for identifying the initiation of da-
mage:

g du x u x, 1 , 9j j( ) = − ( ) ( )

while the failure probabilities are given by

P P g px u x u u, 0 d
10

f j
g u x, 0

j
j

∫( ) = ( ( ) ≤ ) = ( )
( )( )≤

In order to evaluate this integral, the response process Rj(t) needs
to be evaluated.

3.2. Load-effect model

In order to model the dynamic response of the system in a
generic response parameter Rj (e.g. displacement, interstory drift,
stress component), the following linear load-effect model is con-
sidered:

R t s tK q 11j R
T
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where s1 is an uncertain parameter modeling the epistemic un-
certainties in using a load-effect model of this type, RjΓ is a vector
of influence coefficients indicating the response in Rj due to a unit
static force applied one-by-one to the various degrees of freedom
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