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a b s t r a c t

The sensitivity of the stochastic response of linear behaving structures controlled by the novel Vibrating
Barrier (ViBa) device is scrutinized. The Vibrating Barrier (ViBa) is a massive structure, hosted in the soil,
calibrated for protecting structures by exploiting the structure–soil–structure interaction effect. There-
fore the paper addresses the study of the sensitivity of soil–structure coupled systems in which the soil is
modelled as a linear elastic medium with hysteretic damping. In order to accomplish efficient sensitivity
analyses, a reduced model is determined by means of the Craig–Bampton procedure. Moreover, a lumped
parameter model is used for converting the hysteretic damping soil model rigorously valid in the fre-
quency domain to the approximately equivalent viscous damping model in order to perform conven-
tional time-history analysis. The sensitivity is evaluated by determining a semi-analytical method based
on the dynamic modification approach for the case of multi-variate stochastic input process. The ground
motion is modelled as non-stationary zero-mean Gaussian random process defined by a given evolu-
tionary Power Spectral Density function. The paper presents the sensitivity of the response statistics of a
model of an industrial building, passively controlled by the ViBa, to relevant design parameters. Com-
parisons with pertinent Monte Carlo Simulation will show the effectiveness of the proposed approach.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Unpredicted vibrations due to ground motion earthquakes
cause severe damages to the structural components that lead to
the deterioration or collapse of buildings. Although several tech-
niques and strategies of Vibration Control can be adopted for the
seismic design of new structures or seismic retrofit of existing
buildings, every approach is based on the direct design or inter-
vention on the members or on the control systems belonging to
the structure. Conversely, for heritage buildings, strong interven-
tions are avoidable to preserve the authenticity and integrity of
the historic character of the monument; moreover, most of the
existing private buildings are seismically deficient requiring an
important cost impact for their seismic protection. In this context,
a novel passive control device called Vibrating Barrier (ViBa), has
been recently proposed by Cacciola [6]. The Vibrating Barrier is a
massive structure, hosted in the soil and detached from the other
structures, calibrated for absorbing portion of the ground motion
input energy. The aim is to reduce the vibrations of neighborhood
structures by exploiting the structure–soil–structure interaction

(SSSI) effect, i.e. the dynamic influence among vibrating structures
caused by the wave propagation through the soil. To achieve this
goal, the proper calibration of the ViBa parameters is required.
Readers can refer to the work of Cacciola et al. [7] and Cacciola and
Tombari [9] for an in-depth study of the ViBa. In this regard, un-
certainty clearly plays a relevant role in the ViBa design. The un-
certainties such as the random nature of the seismic action and
the dispersion of the mechanical properties of both the structure
and the soil result in a substantial difference between the actual
and the computed seismic response. Therefore, sensitivity analysis
is crucial to understand the impact of inaccurate model para-
meters on the structural response.

Probably one of the earliest contributions to sensitivity analysis
in structural mechanics are due to Fox and Kapoor [15]. In the
framework of stochastic mechanics several papers have been de-
voted to study the sensitivity of the response of structural systems
subjected to stochastic excitations (see e.g. [16,17,18,2]). More re-
cently, Bhattacharyya and Chakrabborty [3] extended Neumann
expansion method within the framework of Monte Carlo simula-
tion for sensitivity analysis of dynamic systems subjected to
ground motion acceleration modelled by a stationary process.
Chaudhuri and Chakraborty [4] determined the response
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sensitivity in the frequency domain of structures subjected to non-
stationary seismic processes. Cacciola et al. [5] proposed a method
to determine the sensitivity of second order statistics of linear
structures forced by Gaussian excitation. Marano et al. [24] per-
formed a parametric sensitivity analysis of the spectral response of
a stochastic SDOF system subjected to a nonstationary seismic
action with respect to uncertain soil parameters. [21,22] and Liu
and Sensitivity [23] proposed numerical methods for calculation of
the sensitivity and Hessian matrix of the response of structures
subjected to uniformly modulated evolutionary random excitation.
Johnson and Wojtkiewicz [19] proposed a high computationally
efficient approach for the computation of the sensitivities of
power spectral densities, and mean-square responses of a struc-
tural system. Recently, Sarkar and Ghosh [27] proposed a hybrid
method to study the sensitivity of the stochastic response of linear
behaving structures considering both uncertainties in the struc-
tural parameters and in the external input.

In this paper, the semi-analytical modal procedure proposed by
Cacciola et al. [5] has been extended in order to consider multi-
variate Gaussian stochastic load process. The method allows the
evaluation of the sensitivity of the nodal response of large MDOF
systems in the modal space corresponding to the nominal values.
In this regard, the method proposed in this paper allows the
sensitivity analysis in the reduced model derived by means of the
Craig–Bampton procedure [1]. The effects of interaction between
the structure and the soil, namely the soil–structure interaction
(SSI), are considered according to the substructure approach pro-
posed by Kausel et al. [20] in which the soil is simulated by dy-
namic impedances subjected to seismic forces. The soil

impedances are contained in the dynamic stiffness matrix com-
puted by boundary element method (BEM) and accounts for hys-
teretic soil damping [26]. Furthermore, a lumped parameter model
(LPM) composed of frequency-independent parameters is used for
converting the exact soil–foundation reference hysteretic model
formulated in the frequency domain to an approximately equiva-
lent viscous model in the time domain. Time domain sensitivity
analysis of the stochastic response through the LPM reduced
model. Finally, numerical studies are carried out for investigating
the stochastic response of a model of an Industrial Building pas-
sively controlled by the novel Vibrating Barrier device with respect
to relevant design parameters.

2. Problem formulation of the global model

Consider the large global n-degree of freedom (n-DOF) struc-
tural linear system depicted in Fig. 1. The dynamic governing
equations of motion are casted in the frequency domain as fol-
lows:

{ }ω ω ω ω ω( )− + ( )= ( ) ( )iK M C u f 1glob
2

glob glob

where = −i 1 ; Mglob, Cglob, and ω( )Kglob are the real [n�n] global
mass, damping and stiffness matrices respectively; ω( )u and ω( )f
corresponds to the [n�1] vectors of the nodal absolute

displacements and the applied forces in the frequency domain (ω
is the circular frequency).

The global system is partitioned in three subdomains or sub-
structures, namely the structure to be protected hereafter referred
in the paper by the subscript [∙]str, the ViBa device, indicated by the
subscript [∙]ViBa, and the soil–foundations interface denoted by [∙]SF.

Therefore, Eq. (1) is restated as:

The vector ω( )u is hence divided into the [p�1]-vector of the
ViBa, uViBa, the [q�1]-vector of the structure, ustr, and the [r�1]-
vector of the soil–foundations system uSF. The mass Mstr, damping
Cstrand stiffness Kstr [q� q]-matrices of the structure are derived
by the traditional finite element approach as well the [p� p]-
matrices, MViBa, CViBa, KViBa of the ViBa. The [r� r]-matrices MSF, CSF,
and KSF are the matrices of the nodes at the soil–foundations in-
terface determined by the substructure approach proposed by
Kausel et al. [20]; by defining ω( )Kdyn as the dynamic stiffness
matrix, that can be decomposed in the real part ( Re) and ima-
ginary part ( )Im as:

{ } { }ω ω ω( )= ( ) + ( ) ( )iK K KRe Im 3dyn dyn dyn

the following relations are derived: =M MSF F, = +
ω

ω

{ ( )}
C C

K
SF F

Im dyn and
ω= + { ( )}K K KReSF F dyn ; MF, C ,F and KF the mass, damping and

stiffness [r� r]-matrices of the foundation itself, respectively.
The dynamic stiffness matrix ω( )Kdyn is determined in order to

take into account the effects of the soil, such as the soil–founda-
tion interaction (SFI), the foundation–soil–foundation interaction
(FSFI), the hysteretic damping as well as the radiation (or geo-
metric) damping without resorting to a large finite element model
of the soil. The dynamic impedance matrix is computed by con-
densing out the entire soil–foundations system onto the founda-
tion interfaces in the frequency domain. It relates the displace-
ments in the nodes on the structure–soil interface to the

Fig. 1. Subdomains of the global problem considered in the paper.
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