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a  b  s  t  r  a  c  t

This  paper  addresses  the  combination  of fatigue damage  for offshore  steel  structures  subjected  to
low–frequency  and  high–frequency  Gaussian  components.  Two  new  formulae  (Eq.  (25)  and  Eq.  (38))
are  developed.  To  verify  the  accuracy  of  the two formulae,  extensive  numerical  simulations  on  bimodal
spectra  are  carried  out,  and  the  results  calculated  by  the  two  new  formulae  are  satisfactory.  In  particular,
compared  with  other  methods  (DNV  methods,  Huang–Moan  method,  Temple  method,  Combined  spec-
trum  approach,  Jiao–Moan  method,  Low’s  bimodal  method  and  Low–2014  method),  one of two  formulae
(Eq.  (38)  in this  paper)  is  accurate  and  simple  enough  and  valid  for a  wide  range,  which  shows a  strong
attraction  for  application  in  engineering  design.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Fatigue is an important design criterion for offshore steel struc-
tures subjected to various types of Gaussian random processes,
in which one special case is the combination of a high–frequency
(HF) Gaussian component and a low–frequency (LF) Gaussian com-
ponent. A typical example is the wave frequency (WF) and low
frequency (LF) drift responses in the risers and mooring systems of
floating offshore installations, in which the response spectra exhibit
two modes for the different loads [1].

In general, the methods for evaluating fatigue damage under
combination of LF and HF Gaussian random processes can be placed
into two categories: the time domain method and the frequency
domain method. When a stress history can be easily obtained, the
time domain method is usually adopted for estimating the fatigue
life of structural and mechanical components, based on the rainflow
cycle counting technique [2] and a linear damage accumulation rule
(Palmgren and Miner rule) [3]. The fatigue damage obtained by the
time domain method is regarded as the most accurate solution.
The time domain method is hence used in the detail design stage
of structures to ensure safety and reliability. However, to obtain
stable fatigue damage results, many time series samples must be
provided, which could be extremely time-consuming. On the con-
trary, frequency-domain methods are widely used as efficient and
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time-saving techniques and may  be the most suitable tools to apply
in every stage of design.

Several spectral methods in bimodal processes are developed
for estimating fatigue damage—e.g., combined spectrum approach
[4], Jiao–Moan method [5], Sakai–Okamura method [6], Fu–Cebon
method [7], Low’s bimodal method [8] and Low–2014 method [9].
The first method is simple but conservative and has been applied in
DNV-OS-E301 [4]. Jiao–Moan method, Sakai–Okamura method and
Fu–Cebon method are compared by Benasciutti and Tovo [10], who
concluded that the Jiao–Moan method gives rather exact results
in a wide range. More importantly, the Jiao–Moan method is also
widely used in offshore rules, such as DNV-OS-E301 [4], DNV-OS-
F201 [11], DNV-RP-F204 [1], API-RP-2SK [12] and ISO-19901-7 [13].
Low’s bimodal method gave a new damage prediction model which
greatly reduced the conservation of fatigue damage due to the large
cycles and small cycles. Low–2014 developed a simple formula
for evaluating the fatigue damage in bimodal random processes,
which is calibrated by numerical simulations. These two methods
provided a great improvement in accuracy of fatigue damage.

In some cases of structural design, compared with the bimodal
spectral methods previously mentioned, it is more convenient to
calculate the contribution of fatigue damage due to LF and HF ran-
dom processes separately. An instance of such a design situation is
swell response of an FPSO that is also subjected to a wave response
[14]. Furthermore, for the fatigue design of offshore wind turbines,
it is practical to evaluate fatigue damage by separating the wind
response and wave response. Since the design of turbine and the
support structures belong to different contractors, which lead to a

http://dx.doi.org/10.1016/j.apor.2016.08.007
0141-1187/© 2016 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.apor.2016.08.007
http://www.sciencedirect.com/science/journal/01411187
http://www.elsevier.com/locate/apor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apor.2016.08.007&domain=pdf
mailto:mayongliang@hrbeu.edu.cn
dx.doi.org/10.1016/j.apor.2016.08.007


48 C. Han et al. / Applied Ocean Research 60 (2016) 47–60

situation that wind–induced fatigue is calculated in time domain,
wave–induced fatigue is computed in frequency domain [15]. For
these two cases, the total fatigue damage due to two dynamic pro-
cesses analyzed separately should be calculated through combined
fatigue damage methods.

A systematic investigation is found in the literature for the com-
bination of fatigue damage. It is firstly recommended to evaluate
the combined fatigue damage by a simplified DNV method that has
been widely applied in DNV specifications such as DNV-RP-F204
[1], DNV-OS-F201 [11] and DNV-RP-C203 [14]. This approach was
originally proposed by Lotsberg [16] and based on the information
of the mean zero up-crossing frequency and the individual dam-
age. However, it yields a highly conservative result of the combined
fatigue damage with a derivation of as much as 200% [17]. Another
simple method for combination of fatigue damage was proposed
by Huang and Moan [17], and its expression is analogous to the
simplified DNV method. In fact, it is a correction to the narrow
band approximation through an irregular factor. In addition, a for-
mula proposed by Temple [15] for combining the fatigue damage is
adopted, and equals the square root of the quadratic summation of
the individual damage. This superposition solution of damage has
been applied in the Utgrunden wind farm [15] for evaluating fatigue
damage due to wave and wind loads. Unfortunately, this method
lacks theoretical background, and its accuracy has not been ver-
ified. Therefore, it is essential to establish a simple, practical and
precise formula for a combination of fatigue damage subjected to
LF and HF Gaussian random processes.

The purpose of this paper is to develop an engineering method
and give specific analytical formulae that can be used for combin-
ing fatigue damage under LF and HF Gaussian random processes.
Numerical simulations are conducted to validate the accuracy of the
proposed methods. Moreover, the existing methods for combining
fatigue damage and bimodal spectra methods are also compared
with the new methods.

2. Basic theory

2.1. Theory of fatigue analysis

The material resistance to fatigue failure can be described by an
S–N curve defined by the form:

N = K · S−m (1)

Where S represents the stress level (assumed herein to be the stress
amplitude), N is the number of cycles to fatigue failure, and K and m
are the fatigue strength coefficient and fatigue strength exponent,
respectively, obtained from the constant amplitude fatigue test.

Fatigue damage is defined as the ratio between the number of
cycles in the design lifetime and that to fatigue failure. The total
fatigue damage can then be calculated as a linear accumulation
rule after Palmgren and Miner:
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where ni is the number of cycles in the stress amplitude Si, resulting
from rainflow counting; Ni is the number of cycles corresponding
to fatigue failure at the same stress amplitude, based on the S–N
curve; n represents the total number of cycles in the duration; and

Sm is the mathematical expectation of Sm

When the stress amplitude is a continuum function and its prob-

ability density function (PDF) is fS(S), Sm can be denoted as follows:

Sm =
∞∫
0

Sm · fS(S)dS (3)

2.2. Spectral characterization of random processes

For a stationary Gaussian random process X(t) assumed herein
to have a zero mean value, it can be expressed by a one-sided power
spectral density SX (ω) in the frequency domain. A set of spectral
moments can be defined as:

�i =
∞∫
0

ωi · SX (ω)dω (4)

where subscript i can usually take an integral value, such as i = 0, 1,
2, 4, which corresponds to the i-th-order spectral moment.

Other typical parameters are the mean zero up-crossing fre-
quency �0 and the peak occurrences frequency �p, which depend
on spectral moments in frequency domain and can be determined
from Eq. (5):
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Moreover, bandwidth is also an important parameter that char-
acterizes a random process. A group of bandwidth parameters is
defined as follows:

˛i =
�i√
�0�2i

(6)

The most commonly used bandwidth parameters are given as

˛1 = �1√
�0�2

, ˛2 = �2√
�0�4

(7)

where ˛2 is the irregular factor, representing the ratio between �0
and �p, and the range of the bandwidth parameters is 0 ≤ ˛1 ≤ 1,
0 ≤ ˛2 ≤ 1.

In Eq. (6), i can also take a non-integral value; for example, ˛0.75,
˛0.97 and ˛1.97 are used in the literature [18,19].

Two spectral parameters, relating to ˛1 and ˛2, are defined as
follows [20,21]:
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where ı is Vanmarcke’s spectral parameter with 0 ≤ ı ≤ 1, and ε is
Wirsching’s spectral width parameter with 0 ≤ ε ≤ 1.

For a Gaussian random process with zero mean, the PDF of peaks
u follows the Rice distribution which has an analytical expression
[22] as given in Eq. (9):

fu(u) =

√
1 − ˛2

2√
2��0

exp(− u2

2�0(1 − ˛2
2)

) + ˛2u

�0
exp(− u2

2�0
)˚(

˛2u√
�0

√
1 − ˛2

2

) (9)

where ˚(·) is the standard normal distribution function.
For an ideal narrow band process, the Rice distribution turns into

the Rayleigh distribution and the amplitude distribution coincides
with the peak distribution; thus, the analytical expression is given
as

fS(S) = S

�0
exp(− S2

2�0
) (10)
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