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a b s t r a c t

In this paper an integral transform approach for solving a class of initial-boundary-value problems in-
volving linear stochastic partial differential equations (SPDEs) encountered in engineering mechanics
applications is presented. The stochastic solution is represented in the complex z-plane, and is inspired
by the corresponding approach to deterministic PDEs already established in the literatures. In this regard,
it is noted that the determination of relevant correlation function and spectral density of the solution is
expedited because of the induced separability of the displacement x, and the timet in their representa-
tions. For three kinds of SPDEs on the half-line { < < ∞ > }x t0 , 0 involving a spatially dependent white
noise excitation, relevant response statistics are determined. The influence of the boundary condition on
the correlation function of the response is also discussed. Further, the corresponding spectral density is
also expressed as an integral in the complex z-plane using the Wiener–Khintchine relation. Numerical
examples pertaining to the stochastic heat equation suggest that the new transform approach is a viable
tool of analysis.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Applications of stochastic partial differential equations (SPDEs)
in the field of mechanics are well established in [1–6], etc. A rather
exhaustive bibliography on SPDEs may be found in [7].

Clearly, determining the general solutions for SPDEs is a chal-
lenging task, especially in the presence of nonlinearity or for
complex boundary conditions [1,2,6]. Note that the basic correla-
tion function and spectral density calculations for stochastic re-
sponse become even more difficult, in view of the inseparability of
the displacement x and the time t in the representation of the
stochastic response.

In this regard, a novel transform method, the so-called “unified
transform method”, described by [8–10] has been found to be ef-
fective for solving certain deterministic linear PDEs. The method
has also been found to be conveniently applicable to multi-space
variables and high-order PDEs.

The method can be understood as “synthesis, as opposed to se-
paration, of variables” (in contrast to the classical separation of
variables which is limited in boundary conditions for solving cer-
tain PDEs [11]. Therein, the method can also be applied even to
certain non-separable and non-self-adjoint problems.

Specifically, the solutions of certain linear PDEs can be re-
presented by an integral in the complex z-plane on the half line
{ < < ∞ > }x t0 , 0 [12]. The aforementioned work is fundamental
background for the treatment of SPDEs pursued in this paper. In
this regard, the integral representation of the stochastic response
with separability of the displacement x and the time t defined by
the transform approach will be helpful to determine the correla-
tion function and spectral density of the stochastic response.

2. Stochastic linear evolution PDEs

2.1. Spatially dependent white noise

In the ensuing analysis, two kinds of spatially dependent white
noises are considered as the stochastic excitations. The first one is

ξ( ) = ( )η( ) ( )x t r x t, , 1

in which ( )r x is sufficiently smooth and deterministic function. The
symbol η( )t denotes a Gaussian white noise with

δ〈η( )〉 = 〈η( )η( )〉 = ( − ) ( )t t s D t s0, , 2

where D is the intensity of η( ) ∙t , denotes statistical averaging,
and δ (∙) is Dirac Delta function.

The second spatially dependent white noise is
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ξ( ) =̇ ̇ ( ) ( )x t x t, W , , 3

which can be seen as the formal time derivative ( )∂
∂ x tW ,
t

of the
Wiener random field ( )W x t, with conditions [2]

̇ ( ) = ( )x tW , 0, 4

and

δ δ〈 ̇ ( ) ̇ ( )〉 = ( − ) ( − ) ( )x t y s D t s x yW , W , . 5

2.2. General nonhomogeneous SPDE

Consider a general linear evolution equation on the half-line
with stochastic excitation ξ( )x t, introduced in Section 2.1. That is,

( )∂ ( )+∅ − ∂ ( )=ξ( ) ( )u x t i u x t x t, , , , 6t x

with

( ) = ( ) ∂ ( ) = ( ) ( )u x u x u t g t,0 , 0, , 7x
j

j0

and

< <∞ > = ⋯ − ( )x t j N0 , 0, 0, 1, , 1, 8

where the symbol ∅( )z is an arbitrary polynomial; the function
( )u x0 is sufficiently smooth; ( )g tj is a function of the time t in-

cluding certain stochastic process; and N is an integer number.
For instance, three popular equations can be retrieved from Eq.

(6) given ∅( )z and =N 1. Specifically, the stochastic heat equation

= + ξ( ) ∅( ) = ( )u u x t for z z, , ; 9t xx
2

the stochastic Stokes equation

+ = ξ( ) ∅( ) = − ( )u u x t for z iz, , ; 10t xxx
3

and the Schrödinger equation with zero potential

+ = ξ( ) ∅( ) = ( )iu u x t for z iz, , . 11t xx
2

2.3. The representation of solution for certain linear PDE by the
transform approach

The integral transform approach can be applied to any linear
deterministic homogeneous PDEs with constant coefficients and
certain initial and boundary conditions [8,10,12]. For instance,
consider a linear evolution homogeneous PDE on the half-line.
That is,

( )∂ ( )+∅ − ∂ ( ) = ( )q x t i q x t, , 0, 12t x

and

( ) = ( ) ∂ ( ) = ̃ ( ) ( )q x q x q t g t,0 , 0, , 13x
j

j0

with

< <∞ > = ⋯ − ( )x t j N0 , 0, 0, 1, , 1. 14

Here the solution ( )q x t, can be expressed via one parameter
family satisfying the equation for any complex z,

( ) ( )+ = ( )− +∅( ) − +∅( )e q e X 0, 15
izx z t

t
izx z t

x

where

( ) = − ∅( )−∅( )
− ( )X x t z i

z l
z l

q, , , 16

with = − ∂l i x. Specifically, for Eq. (9),

( ) = − − ( )X x t z izq q, , ; 17x

for Eq. (10),

( ) = − + + ( )X x t z z q izq q, , ; 18x xx
2

and for Eq. (11),

( ) = − ( )X x t z zq iq, , . 19x

Next, the unknown information in the boundary conditions for
constructing the solution ( )q x t, can be determined from the re-
lation

^ ( ) = − ^ ( ) < ( )g z t q z z, ,Im 0, 200

where ^ ( )q z0 and ^ ( )g z t, are represented by

∫^ ( ) = ( ) ( )
∞

−q z dxe q x, 0 , 21
izx

0
0

and

∫ τ τ^ ( ) = ( ) ( )
ϕ τ( )g z t d e X z, 0, , . 22

t
z

0

At the boundary =x 0, the definition of ^ ( )g z t,j is denoted by

∫ τ τ^ ( ) = ˜ ( ) ( )
τ∅( )g z t d e g, , 23j

t
z

j
0

= ⋯ −j N0, 1, , 1.

Therefore, using Eqs. (20)–(23), the function ^ ( )g z t, in Eq. (22)
can be determined by eliminating the unknown term ^ ( )g z t,j . For

convenience, if =N 1, the final expression of ^ ( )g z t, can be sepa-
rated into

ρ^ ( ) = ( ) ^ ( ) + ^ ( ) ( )∅g z t f z g z t z, , , 240

where

( ) = − ∅( ) = ( )∅f z iz z z2 , for , 252

( ) = − ∅( )=− ( )∅f z z for z iz3 , , 262 3

and

( )= ∅( )= ( )∅f z z for z iz2 , . 272

The function ρ̂ ( )z is the remaining part of ^ ( )g z t, which is in-
dependent of the time t .

The solution of Eq. (12) can then be expressed in the form
[8,12]

∫ ∫π π
( ) = ^ ( ) + ^ ( )

−∞

∞
−∅( )

−∞

∞
−∅( )q x t dze q z dze g z t,

1
2

1
2

,izx z t izx z t
0

∫ ∫π π
= ^ ( ) + ^ ( )

( )−∞

∞
−∅( )

∂
−∅( )

+
dze q z dze g z t

1
2

1
2

, .
28

izx z t

D

izx z t
0

where ^ ( )g z t, is given by Eq. (24). Here in-
troduce ={ ∈ ∅( )< > }+D z C: z zRe 0,Im 0 ; and ∂ +D the boundary of
this domain oriented so that +D is on the left of ∂ +D . Note that the
integrands in Eq. (28) are analytical and bounded in the domain of

={ ∈ ∅( )> > }+E z C: z zRe 0,Im 0 .

2.4. General solution of Eqs. (6)–(8) with stochastic excitation (1) or (3)

The stochastic excitation ξ( )x t, in Eq. (1) or (3) is assumed to be
sufficiently smooth in x-axis, stationary and mean square integr-
able with zero mean value. That is, ξ( )x t, satisfies the condition
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