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We develop an extended Boussinesq model to predict the propagation of waves in porous media. The inertial and
drag resistances are taken into account in the developed model. When these resistances are neglected, the
developed equations are reduced to the extended Boussinesq equations of Madsen and Sgrensen (1992) [Coastal
Eng. 18, 183-204] for non-porous media The model can be applied for non-porous media as well as porous media
because it does not need any matching condition at the interface between the porous and non-porous media. The

developed model is verified by comparing numerical solutions to experimental data with several cases of solitary
waves or sinusoidal waves interacting with a porous breakwater in one- and two-dimensional domains.

1. Introduction

Rubble-mound breakwaters have been constructed worldwide for a
long time. They are easy to build, safe against severe wave climate, and
efficient to protect facilities behind the breakwater. Stones or concrete
blocks are placed in a trapezoidal shape with a slope of 1:2 to 1:3 on sea
side and of 1:1 to 1:1.5 on land side. Armor units can be placed further on
the sea side to dissipate incoming wave energy. Wave energy dissipation
through the porous breakwater occurs dominantly via the turbulence of
high speed waters and also by the friction of waters through porous
media. These are called the turbulent and laminar drag resistances,
respectively. The energy dissipation also occurs due to unsteadiness of
water waves in porous media so-called inertial resistance. In the 1970s,
the energy dissipation of water waves in porous breakwaters was
analytically investigated by several researchers (Sollitt and Cross, 1972;
Madsen, 1974) considering both the inertial resistance and the drag
resistance of the Forchheimer (1901) type. They assumed that water
waves are linear and are normally incident to the breakwater, water
depth is constant and the breakwater is in rectangular shape. In the
1990s, the energy dissipation of water waves in porous breakwaters
could be obtained for waves obliquely incident to the breakwater and
also for varying water depth using the mild-slope equations (Izumiya,
1990). Also, researchers were concerned about the energy dissipation of
water waves with two layers, i.e., upper non-porous layer and lower
porous layer such as water waves over a submerged porous breakwater
(Izumiya, 1990; Cruz et al., 1997; Hsiao et al., 2002) or a porous bed
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(Mase et al., 1995; Corvaro et al., 2010, 2014a; b; Torres-Freyermuth
et al., 2017). The solution could be obtained using the mild-slope equa-
tions (Izumiya, 1990; Mase et al., 1995), the Boussinesq equations
(Flaten and Rygg, 1991; Cruz et al., 1997; Hsiao et al., 2002), the
Navier-Stokes equations (Torres-Freyermuth et al., 2017) or through
physical experiments (Corvaro et al., 2010, 2014a; b). Since the 1970s,
the energy dissipation of water waves in porous breakwaters could be
obtained using the Boussinesq equations (Abbott et al., 1978; Madsen
and Warren, 1984; Liu and Wen, 1997). These equations consider the
drag resistance of the Forchheimer type but not the inertial resistance.
When the drag resistance is neglected, these equations are reduced to the
equations of Peregrine (1967). When applied to porous breakwaters, Liu
and Wen used two different types of Boussinesq equations, one for
non-porous media and the other for porous media, and, at the interface,
they used matching conditions. For waves normally incident on a porous
breakwater in front of a wall, Madsen (1983) compared reflection co-
efficients between the linear analytical solution and the numerical so-
lution of the Boussinesq equations considering the drag resistance and
neglecting the inertial resistance. He found that the two solutions are
close to each other for linear waves but these are different for nonlinear
waves. In engineering applications, people often use the Boussinesq
equations because these equations yield solutions for real waves such as
nonlinear and random waves whereas the mild-slope equations yield
solutions only for linear and regular waves. The Boussinesq equations of
Peregrine (1967) can be applied only in shallow water but not in deep
water due to weakly dispersive condition. Since the 1990s, the

E-mail addresses: nghi.vu@ut.edu.vn (V.N. Vu), clee@sejong.ac.kr (C. Lee), thjung@hanbat.ac.kr (T.-H. Jung).

https://doi.org/10.1016/j.coastaleng.2018.04.023

Received 13 September 2017; Received in revised form 5 March 2018; Accepted 28 April 2018

0378-3839/0© 2018 Elsevier B.V. All rights reserved.


mailto:nghi.vu@ut.edu.vn
mailto:clee@sejong.ac.kr
mailto:thjung@hanbat.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coastaleng.2018.04.023&domain=pdf
www.sciencedirect.com/science/journal/03783839
http://www.elsevier.com/locate/coastaleng
https://doi.org/10.1016/j.coastaleng.2018.04.023
https://doi.org/10.1016/j.coastaleng.2018.04.023
https://doi.org/10.1016/j.coastaleng.2018.04.023

V.N. Vu et al.

Boussinesq equations have been developed to be applied even in deep
water by including dispersive terms in the momentum equations (Mad-
sen and Sgrensen, 1992) or using particle velocities at a certain elevation
(Nwogu, 1993). These Boussinesq equations mentioned before have been
developed on the assumption of irrotational flow and are classified as the
first class of the Boussinesq models by Brocchini (2013). Recently, due to
the development of computer technology, numerical models were
developed to directly solve the Navier-Stokes equations for waves in
porous breakwaters such as NS3 (Mayer et al., 1998), COBRA (Liu et al.,
1999) and CADMAS-SURF (CDIT, 2001). These models can predict not
only the run-up of waves on the breakwater but also the overtopping
which cannot be predicted by the depth-integrated models such as the
Boussinesq equations and the mild-slope equations. However, it takes so
long time to solve the Navier-Stokes equations in three-dimensional
phenomena such as refraction and diffraction. Thus, these models are
not used yet in applying to real situations.

In the present study, we develop extended Boussinesq equations for
porous media considering both the inertial resistance and the drag
resistance of the Forchheimer type. When these resistances are neglected,
the equations are reduced to the equations of Madsen and Sgrensen
(1992). In section 2, we develop the Boussinesq equations for porous
media in shallow water and then the developed equations are extended to
deeper water by adding dispersive terms in the momentum equations.
Also, the dispersion relations are investigated in detail and the effects of
the inertial and drag resistances are compared each other. In section 3,
we conduct numerical experiments for solitary waves propagating
through a porous breakwater. A solution of solitary waves for non-porous
water is derived and used as an initial condition. Numerical solutions are
compared to hydraulic experimental data for horizontally one- and
two-dimensional domains. In section 4, we summarize our research
works.

2. Development of Boussinesq equations for waves in porous
media

2.1. Boundary value problems

The variables and domain of interest are shown in Fig. 1. The domain
covers not only porous media (porosity A < 1) but also non-porous media
(porosity A = 1). The water surface is displaced by n from still water. The
bottom is located at z = —h from the still water. In order to develop the
extended Boussinesq equations for waves in porous media, we set up
boundary value problems for waves inside porous media. Since the
porosity is uniform, the continuity equation in porous media is given by
V;-U=0 (€D)

where U= (u,v,w) is the seepage velocity vector and V3=
(0/0x, 0/dy, 0/0z) is the gradient operator. The momentum equation in
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Fig. 1. Definition of variables in interested domain.

86

Coastal Engineering 139 (2018) 85-97

porous media is given by

du 1
11—

- D+1= 2
dt+pV3(p+pgz)+ +1=0 2

where 1 is the porosity, p is the pore pressure, p is water density, g is the
gravitational acceleration, D is the drag resistance term, and I is the in-
ertial resistance term. It should be noted that the continuity equation (1)
and the momentum equation (2) are expressed in terms of the seepage
velocity instead of the discharge velocity.

There are several ways to define the drag resistance term. Ergun
(1952) defined the drag resistance term in the Forchheimer (1901) type
using a volume-averaged discharge velocity U'(= AU). In the present
study, we use Ergun's definition of D in terms of the seepage velocity U
instead:
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where ¢ and «; are coefficients representing the laminar and turbulent
flow resistances, respectively, v is the kinematic viscosity of water, and d
is the size of the solid material. Engelund (1953) also used the For-
chheimer type to define the drag resistance term:
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where oz and a, are coefficients which represent the laminar and tur-
bulent flow resistances, respectively, recommended by Engelund. The
quadratic term in his formula is the same as that in Ergun's formula, but
the linear term to be fitted for porous flow in sand is different. Ward
(1964) also suggested the drag resistance term as follows:
C,
~f |U|‘Uv
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where K is the intrinsic permeability and Cy is the turbulent resistance
coefficient. This drag resistance term does not depend directly on the
porosity and the grain size. The mathematical form of Eq. (3) including
the parameters 4, v, and d can be derived from the Navier-Stokes equation
(Irmay, 1958) or from the Reynolds equation (Burcharth and Andersen,
1995). Thus, in the present study, we use the definition of the drag
resistance term of Ergun.
The inertial resistance term I in Eq. (2) is given by

I=(1 —/1)(1+K)%

(6)
where « is the added mass coefficient. In unsteady flow, the inertial
resistance term is used to account for the divergence and convergence of
the streamlines in the presence of solid material. The inertial resistance
term should be considered for both of the local and convective acceler-
ations. The added mass coefficient is for the inertial resistance in view of
geometrical smoothness of the solid material. In case of no solid material
in the media, the porosity is 1 = 1 and the drag and inertial resistance
terms are zero.

Several researchers proposed different momentum equations
including the drag and inertial resistance terms. In this study, the mo-
mentum equation (2) and the inertial resistance terms (6) are used as
Madsen (1974) and Cruz et al. (1997). However, Madsen considered the
local acceleration term dU/dt and neglected the convective acceleration
term U- VU. The drag resistance term given by Eq. (3) is different from
that of Cruz et al. who used Ward's term given by Eq. (5).

Substitution of Egs. (3) and (6) into the momentum equation (2) gives
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