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We present the derivation of a nonlinear weakly dispersive formula to reconstruct, from pressure measurements,
the surface elevation of nonlinear waves propagating in shallow water. The formula is simple and easy to use as it
is local in time and only involves first and second order time derivatives of the measured pressure. This novel
approach is evaluated on laboratory and field data of shoaling waves near the breaking point. Unlike linear
methods, the nonlinear formula is able to reproduce at the individual wave scale the peaked and skewed shape of
nonlinear waves close to the breaking point. Improvements in the frequency domain are also observed as the new
method is able to accurately predict surface wave elevation spectra over four harmonics. The nonlinear weakly
dispersive formula derived in this paper represents an economic and easy to use alternative to direct wave

elevation measurement methods (e.g. acoustic surface tracking and LiDAR scanning).

1. Introduction

Near-bottom-mounted pressure sensors have long been used for
measuring surface wave in the nearshore. However, the relationship
between bottom pressure and sea surface elevation is not straightfor-
ward. This relationship is commonly assumed to be given by linear wave
theory, the so-called transfer function method (e.g. Bishop and Donelan
(1987) and Tsai et al. (2005)). The validity of this linear reconstruction
has been extensively studied in field conditions for waves propagating in
relatively shallow water (Hom-ma et al., 1966; Esteva and Harris, 1970;
Cavaleri et al., 1978; Guza and Thornton, 1980). Although discrepancies
were greater close to the break point, Guza and Thornton (1980) found a
good agreement in and outside the surf zone between sea surface
elevation spectra derived from pressure data and from direct elevation
measurements. Errors in both total variance and energy density in a
particular frequency band were less than 20%. In a more controlled
environment, Bishop and Donelan (1987) estimated that using linear
wave theory was leading to error of about 5% of the wave height; un-
certainty in the deployment of in situ instruments and the data itself was
thought to be responsible for the varying error estimates found in the
literature. Following these seminal studies, the linear reconstruction
method has become the main approach for characterizing shallow-water
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surface-wave elevation in field conditions.

This approach is commonly used for determining bulk wave param-
eters such as the significant wave height H;, but it has also served as a
basis for studying nonlinear wave interactions in the field (e.g. Elgar and
Guza (1985), Elgar et al. (1997), Senechal et al. (2002), Henderson et al.
(2006)). However, we know that wave nonlinearities can be strong in the
shoaling zone, especially in the region close to the onset of breaking, and
thus the use of a linear theory to reconstruct wave elevation can be
questioned. For instance, Bonneton and Lannes (2017) and Martins et al.
(2017a) have shown that the linear reconstruction fails to describe the
peaky and skewed shape of nonlinear waves, and lead to an underesti-
mation of the individual wave height by up to 30% just prior the breaking
point (Martins et al., 2017a). Such measurement errors are problematic
for many coastal applications, such as studies on wave overtopping and
submersion which require accurate measurements of the highest wave
crests. Furthermore, a correct description of wave asymmetry and
skewness is of paramount importance for understanding sediment dy-
namics (e.g. Dubarbier et al. (2015)). Finally, an accurate description of
the wave elevation field is also crucial for the validation of the new
generation of fully-nonlinear phase-resolving wave models (e.g. Zijlema
et al. (2011), Bonneton et al. (2011) or Shi et al. (2012)).

Even if some methods are now available for a direct measurement of
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Fig. 1. Sketch of the Cartesian coordinate system: x is the horizontal axis along
which waves propagate and z points vertically upwards, with z = 0 being the
mean water level and z = —hy the distance to the bottom. The wave amplitude is
noted a and &, represents the distance to the bottom at which the pressure
is measured.

the surface elevation, such as acoustic surface tracking (Birch et al.,
2004) or LiDAR scanning (Martins et al., 2016), pressures sensors remain
a very useful tool for coastal wave applications. Indeed, they are cheap,
robust, not sensitive to air bubbles or turbidity, and easy to deploy since
they do not require the presence of nearshore infrastructure, as it can be
the case for LiDAR technology [e.g., see (Martins et al., 2017¢)]. Bon-
neton and Lannes (2017) recently derived a method which allows a fully
dispersive nonlinear reconstruction of the surface elevation from pres-
sure measurements. Comparisons with numerical Euler solutions and
laboratory data showed that this nonlinear method provides much better
results than the classical linear approach. It gives an accurate prediction
of the maximum elevation and, contrary to the nonlinear heuristic
method proposed by Oliveras et al. (2012), it accurately reproduces the
skewed shape of nonlinear dispersive wave fields. However, this method
requires, like the classical linear transfer approach (Bishop and Donelan,
1987; Tsai et al., 2005) and the heuristic method (Oliveras et al., 2012;
Vasan et al.,, 2017), the use of a frequency cutoff which becomes a
limiting factor for the reconstruction of strongly nonlinear waves. In the
present paper we derive a nonlinear weakly-dispersive method which
allows an accurate reconstruction of nonlinear waves in shallow water,
especially just prior to breaking.

2. Nonlinear weakly-dispersive reconstruction formula

In this section we derive a formula working in the time domain, which
allows the elevation reconstruction of nonlinear shallow water waves
from pressure measurements. This formula is an approximate expression,
in the shallow water regime, of the fully dispersive formula derived in
(Bonneton and Lannes, 2017). The derivation presented in this section is
much simpler and straightforward compared to the general fully
dispersive derivation.

We consider that the wave field is locally close to a two-dimensional
wave field. We choose Cartesian coordinates (x,z), where x is the hori-
zontal axis along which waves propagate and z the upward vertical co-
ordinate. We denote z = {(x, t) the elevation of the free surface above the
still water level z = 0, and by z = —h, the constant bottom elevation (see
Fig. 1). The water depth h can be expressed as h(x,t) = ho + {(x,t). The
pressure P, is measured at a distance &, above the bottom, P, =
L where P(x,z,t) is the pressure field.

The fluid motion is governed by the free-surface incompressible
irrotational Euler equations; if the flow is irrotational, as it is assumed
here, it is convenient to work with a velocity potential instead of the
velocity field, and with Bernoulli's equation instead of Euler equations. If
¢ denotes the velocity potential, these equations can be recast in the
form:
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where p is the water density, g the gravity and P, the (constant) at-
mospheric pressure. These equations are complemented by boundary

conditions. At the bottom we have
0. =0 onz= —hy; (€8]
at the surface, we have the classical kinematic equation on ¢,

arc = a:(/) - arcax(/’ on z=¢, 2

and the pressure continuity,

P=Py, on z={(. 3

Three main length scales are involved in this problem: the charac-
teristic horizontal length L (L = 1/k, where k is the typical wave num-
ber), the amplitude a of the wave, and the depth at rest hy. The problem is
then controlled by two dimensionless parameters:

a " N
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where ¢ is a nonlinearity parameter while y is the shallowness parameter.
The different variables and functions involved in this problem can be put
in dimensionless form using the relations
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where the primes are used to denote dimensionless quantities. Omitting
the primes for the sake of clarity, the vertical momentum equation, in
dimensionless form, writes

el =—1-0.P,

where I' = 0w + euo,w + ﬁw@zw is the vertical acceleration, u = dy¢ the

horizontal velocity and w = d,¢ the vertical velocity. Integrating this
equation over z we get

¢
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where ¢y is the dimensionless hydrostatic reconstruction

1
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The Formula (4) is exact but involves quantities that cannot be
expressed in terms of the measured pressure P,,. Our goal is to derive
approximate formulas that can be expressed as a function of P, or
equivalently ¢;;. Following (Lannes and Bonneton, 2009), we shall
perform an asymptotic expansion of (4) in terms of the shallowness
parameter u.

The velocity potential ¢ is given at second order by

o=y —5(+1)7 —m)dy +0(w), ©
withy = ¢ . From this equation we can deduce that
u=U+0(u)

w=—pu(z+ 1)U+ 0(y?),
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