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A B S T R A C T

An analytical model is presented for the 2DV flow-structure, bed shear stress and surface shape of the tips of dam-break waves, tsunami- or wave run-up. This model
differs from previous analytical models, which have taken the usual ‘hydraulics approach’, describing bed-parallel velocities only and expressing the bed shear stress, τ
in terms of a friction factor from steady, uniform flow and an ad-hoc velocity. The 2DV model presented here gives a simple, rational explanation for the fact that the
boundary layer is very thin at the contact point. In turn, this explains the measurements of bed shear stresses, which decay with distance s from the tip, or at a fixed
point, with time t since passage of the tip. The manner of τ�decay depends on the growth of the boundary layer thickness δ with distance from the tip. The details of
this boundary layer growth depend on challenging turbulence features for unsteady, non-uniform flows over rough and usually mobile beds. For illustrative purposes,
details are given for the simple example of δ ¼ (vtt)

1/2 ¼ (vts/c)
1/2, where vt is the nominal eddy-viscosity and c is the speed of the tip, assumed to progress with

constant form. With this variation of δ, the model gives τ~ t�1/2 ¼ (s/c)�1/2, which is in good qualitative agreement with measurements. Subsequently, this quasi-
steady model gives h~ s1/4 for the depth on a horizontal bed, also in good agreement with experiments. The 2DV flow pattern includes surface particles drifting
towards the tip and eventually impacting on the bed at the contact point with full forward momentum and large bed-normal velocity. As well as large local bed shear
stresses, this tip-flow pattern involves large vertical accelerations and associated large localized pressures, which are likely to be important for the sediment
entrainment under the tip. The eddy viscosity is the only tuning parameter in this simple initial model. Based on shear-stress and depth measurements from laboratory
settings, with tip propagation speeds of the order 2 m/s, one finds that the required eddy viscosity is in the range 1� 10�6 - 18� 10�6 m2/s increasing with increasing
bed roughness in the range from smooth beds to beds of 2.85mm fixed sand-grains.

1. Introduction

Dam-break waves and the run-up from tsunami and wind waves on
beaches are important examples of hazardous, unsteady, non-uniform
flows. Hence, a great deal of effort has gone into understanding and
modelling them. Early models, eg Ritter (1892) are based on the
non-linear shallow water equations and the method of characteristics.
They show that an ideal fluid progresses with a very thin, upward
concave, sharp front.

However, classical experiments, by Schoklitsch (1917) and Dressler
(1954), and more recently O'Donoghue et al. (2010), Sumer et al. (2011)
and Spinewine and Capart (2013) show that the front is not sharp but
bull-nose shaped (upward convex) with a (near) vertical front, as
depicted in Fig. 1.

The bull-nose shape is due to the fact that, in a real fluid, friction
becomes dominant, when the depth gets sufficiently small towards the
tip. Hence, models with a friction dominated tip region were developed
in the 1950s by Dressler (1952, 1954) and Whitham (1955). These
models and many that followed, show how the friction modifies the tip
from sharp to generally blunt and how the speed of the tip is reduced due

to friction.
The reduction of the tip speed and the friction-generated changes to

the overall surface shape are usually small, cf Fig. 2.4.2 of Nielsen (2009):
Wave runup on smooth plastic is not visibly faster or higher than on a
rough, permeable sand bed (d50� 0.5mm). Thus, it may be argued that
accounting for friction for inundation modelling purposes is peripheral
considering other complications like topographical complexity. Howev-
er, sediment transport is significant near the tip, see eg Figs. 2 and 17 of
Spinewine and Capart (2013) and sediment transport models can only be
developed on the basis of boundary layer- and shear stress models. –
Shear stress predictions are essential for sediment transport modelling.

Early models, eg, Whitham (1955) were based on the bed shear stress
under the tip being uniform. This is however not realistic. Time series of
directly measured bed shear stresses, e g, Barnes et al. (2009) and Jiang
and Baldock (2015) show that, at a given point, τ decays steeply with
time after the passage of the tip. The measured decay is not dissimilar
from the t�1/2-shape for a boundary layer on a plate after abrupt start-up
of a laminar flow. Schlichting and Gersten (2017) p 126.

This t�1/2-time-dependence is not reconcilable with the uniform
stress hypothesis, but indicates that the bed shear stress is a decreasing
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function of the distance s from the tip. In related but different scenarios,
like the boundary layer developing with distance from the edge along a
thin plate, the bed shear stress shows a steeply decaying trend not dis-
similar from τ~ s�1/2, where s is the distance from the edge of the plate.
Blasius (1908) gave a laminar solution for this scenario and his solution
corresponds to τ~ s�1/2. The observed behaviour, roughly: τ~ s�1/2, can
be mimicked by hydraulic models with no explicit boundary layer
structure and no vertical velocities. This may be achieved by assuming a
suitable depth- (Reynolds Number-) dependence of the friction factor in
hydraulic style models, e g, Chanson (2009). However, these applications
of friction factors from steady, uniform flow to the highly non-uniform
and unsteady tip are ad-hoc and the agreement with experiments is
fortuitous.

The model, developed here has an explicit, albeit simple, boundary
layer structure with which the vertical velocities as well as the bed shear
stresses and surface shape can be evaluated, producing theoretical ad-
vances over previous analytical models.

We shall develop general relationships between the boundary layer
thickness δ, the bed shear stress τ and the surface shape h(s) for a tip,
which progresses in a quasi-steady fashion. We find that when δ~ t1/
2 ~ s1/2, the momentum equation leads to τ~ t �1/2 in good agreement
with observations. In turn, a quasi-steady force balance, similar to that of
Whitham (1955), corrected for the fact that the velocity is not uniform in
this model, but varies with distance from the bed, gives h~ s1/4 for a
horizontal bed, also in good agreement with experiments.

By comparing with the scarce measurements of surface shapes and
bed shear stresses it is found that the eddy viscosity, which is the only
tunable parameter in this initial model needs to be in the range
1� 10�6 m2/s< vt< 18� 10�6 m2/s for laboratory experiments with
tip-propagation velocities of the order 2 m/s. The lower value is found
for nominally smooth beds, while the higher value corresponds to beds of
fixed sand-grains with d50¼ 2.85mm.

2. Flow structure and overall dynamics

2.1. Momentum equation for a quasi-steady tip with non-uniform velocity

We consider a scenario like that observed by Baldock et al. (2014) and

illustrated in Fig. 1, where fluid is arriving from above to the contact
point with full forward velocity c equal to the propagation speed of the
tip. Equality of particle velocity at the contact point with the tip propa-
gation speed corresponds to the surface tangent being perpendicular to
the bed at the tip. This assumption is justified below, following Equation
(13), where it is shown that the surface tangent must indeed be
perpendicular to the bed for a wide class of functions describing the bed
shear stress' dependence upon the distance from the tip. The no-slip
boundary layer thickness is then practically zero at the tip and will
grow with distance from the tip. The momentum defect corresponding to
this boundary layer growth is ‘injected’ by the bed shear stress.

In the frame of reference, which follows the steadily progressing tip,
illustrated in Fig. 1, the momentum equation (for motion parallel with
the bed) is

0 ¼ �τ � ϱgh
∂h
∂x �

∂
∂x

Z surface

bed
ϱðv� cÞ2dn (1)

where x is the coordinate in direction of tip propagation relative to a
fixed point on the bed, n is the coordinate perpendicular to the bed and ϱ
is the fluid density. As per Fig. 1, c is the speed of propagation of the tip, v
is fluid velocity parallel with the bed and h is depth, measured perpen-
dicular to the bed. Rewriting this in terms of the distance from the tip:
s¼ xtip-x and hence ∂

∂s ¼ � ∂
∂x we get

0 ¼ �τ þ ϱgh
∂h
∂s þ

∂
∂s

Z surface

bed
ϱðv� cÞ2dn (2)

Here, the last term is additional to Whitham's (1955) quasi-steady
balance between bed shear stress and pressure-force gradient because,
we are dealing with a velocity distribution v(s,n), while Whitham's and
other hydraulics-style descriptions assume uniform velocity v � c in the
tip. Since the propagation speed c of a tip, which propagates with con-
stant form, is also the mean velocity in any vertical, the last term can also
be seen as ϱ ∂ VarðvÞ

∂s , ie, the derivative of fluid density times the velocity
variance through a vertical. We shall express this term in terms of a
momentum thickness δm defined by

Z surface

bed
ϱðv� cÞ2dn ¼ ϱc2δm (3)

We shall see that, with the reasonable assumptions that δm scales in
the sameway as the boundary layer thickness with respect to the distance
from the tip and/or the time since passage of the tip, namely

δm ∝δ ∝
ffiffiffiffiffi
vtt

p
∝

ffiffiffiffiffiffiffiffiffiffi
vts=c

p
(4)

the new momentum equation (1) predicts observed tip surface shapes
very successfully.

2.2. A simple self-similar velocity structure

It is instructive at this stage to go through the details for the simplest
model: self-similar velocity profiles, eg,

vðs; nÞ ¼ v∞
h
1� e�

n
δðsÞ
i

(5)

where the asymptotic velocity v∞ must be determined so that

Z h

0
v dn ¼ ch (6)

corresponding to the tip propagating with constant form at speed c. With
this velocity structure, that gives

v∞ ¼ c

1� δ
h

�
1� e�h

δ

� (7)

Fig. 1. Swash tip progressing towards the right at speed c.
Dotted curves and arrows indicate velocities relative to the bed.
Arrows along the surface and bottom indicate drift relative to the tip: Forward
towards the tip along the surface and backwards corresponding to the no-slip
condition at the bed.
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