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A B S T R A C T

Applications of (video-based) depth inversion in the near-shore coastal environment are growing in numbers.
Video-based capabilities in nearshore monitoring are improving and coastal monitoring programs are expanding
due to greater availability and reduced costs. Video-derived beach (state) indicators such as beach width, bar
position and wave and current parameters are supplemented by accurate depth estimations through inversion.
Video-based depth inversion knows two main approaches, a spectral and temporal method of celerity estimation.
The two methods have so far never been compared as video-systems are often tailored for the chosen celerity
estimation method. Here, a spectral and temporal method are compared using controlled synthetic datasets ob-
tained using the SERRE1D Boussinesq model to estimate celerity and invert depth. The assessment is carried out
on a set of wave boundary conditions with over linear and barred bottom profile. Both methods invert depth with
a similar accuracy for the most realistic JONSWAP cases. An evident correlation is found between wave skewness,
non-linearity and depth estimation error linked to the limits of the linear dispersion relation. A residual ’sensing’
error is linked to method-based parameters and a changing wave shape as incident waves propagate inshore. The
inversion-error can be reduced significantly including a wave height dependent non-linear correction. Impor-
tantly, a method-based error is introduced for the temporal method to increase the suitability for data assimi-
lation. Likewise, the spectral method has its own existing depth-error estimation to feed into the Kalman Filter.
However, these method-based error estimates show very weakly or no relation to the observed error between
estimated cross-shore profile and bottom profile used for the model input.

1. Introduction

Increase in the worlds coastal population, a related greater number of
valuable assets at coastal regions and human-shaped coastlines (Lazarus
et al., 2016; Werner et al), in combination with a dynamic and more
extreme environmental setting requires understanding and predictive
skills of coastal morphodynamics. Forecasting models, such as (Flood)
early warning systems, rely on accurate boundary conditions for their
predictive skill e.g. wave conditions and accurate bathymetric informa-
tion from hours to years in temporal and local to regional on spatial scale
(Werner et al; Baart et al., 2016; Bogaard et al). Traditionally, bathy-
metric data is obtained using ship-mounted echo sounding technology.
Depths are measured by the time of flight of a bed-reflected acoustic
signal. More recently, remote sensing techniques, such as radar, satellites
and video, successfully obtained bathymetries through depth inversion
(Bell, 1999; Holman and Stanley, 2007). Depth inversion through remote
sensing often uses a mathematical relation between wavelength, wave

celerity and wave depth, with similar accuracy as traditional methods
(Seiwell, 1946). Depth inversion through remote sensing allows for a
large spatial domain with O(10m) spatial resolution on a higher tem-
poral resolution – hourly but potentially near continuous. Compared to a
single echo-sounding survey, remote sensing techniques are, in case of
video systems, a fraction of the costs. The resolution and the low cost in
combination with a need for accurate, up-to-date, bathymetric informa-
tion for numerical predictive models explains the recent efforts made and
migration to remote sensing (Almar et al., Roelvink; Bell, 1999; Stockdon
and Holman, 2000; Misra et al., 2003; van Dongeren et al., 2008; Holman
et al., 2013).

In the sub-tidal zone, remote sensing efforts have opened up the
possibility to estimate depths accurately, primarily using video imagery
or X-band radar. The most common approaches are depth-inversion
methods, using the linear dispersion relation (Almar et al., Roelvink;
Bell, 1999; Stockdon and Holman, 2000), non-linear depth inversion
(Holland, 2001; Cat�alan and Haller, 2008) and extended Boussinesq
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equations (Kennedy et al., 2000; Misra et al., 2003). Another approach is
the coupling video-based wave energy dissipation patterns and rates to
modelled wave energy dissipation patterns and rates with a numerical
model (Aarninkhof et al., 2005). van Dongeren et al. (2008) used the
principle of Aarninkhof et al. (2005) and merged multiple depth esti-
mations (depth through dissipation rates and celerity estimation)
together in a data assimilation technique. Wilson et al. (2010) shows that
through further data assimilation (the addition of wave and current
measurements) using an ensemble Kalman filter, the accuracy of an
updated, modelled, bathymetry can be enhanced. Remotely sensed (e.g.
optical and radar) shorelines (Aarninkhof et al., 2005), wave celerity
(Holman et al., 2013) and current fields (Chickadel, 2003) together can
estimate morphology accurately through data assimilation without
in-situ measurements (Birrien et al., 2013; Wilson et al., 2014; Almar
et al., Roelvink). In case of video camera systems and depth inversion
using the linear dispersion relation, two main approaches exist; a tem-
poral and spectral method. A temporal method that correlates temporal
wave-like pixel intensity signals at different positions (Almar et al.,
Roelvink; Cat�alan and Haller, 2008; Bos, 2006) and a spectral method
that correlates wave like pixel intensity phases at different positions
(Stockdon and Holman, 2000; Plant et al., 2008; Holman et al., 2013).
Holman et al. (2013) combined the earlier techniques used in Stockdon
and Holman (2000) and Plant et al. (2008) and added a Kalman like
assimilation for robustness and error reduction. Bergsma et al. (2016);
Smith et al applied this depth inversion technique successfully in a
challenging highly energetic macro-tidal environment after accounting
for the low ratio between camera height and tidal range. In addition, a
solution was presented for camera seam problems (observed by (Smith et
al; Rutten et al., 2017)) and showed the importance of tidal elevation
based floating (non-fixed) pixel position.

The difference between the temporal and spectral methods is
particularly the estimation of wave celerity in respectively the time and
spectral domain. The temporal method (Almar et al., Roelvink) correlates
time-varying wave signals in space to find the best correlation that is
related to the celerity. The spectral method (Plant et al., 2008; Holman
et al., 2013) attempts to find the celerity by deploying a cross-spectral
correlation to determine the most coherent frequencies which are asso-
ciated to a cross-shore spectral phase ramp, hence wavenumber k leading
to celerity c. Video camera systems are often tailored to the specific
method. The temporal method (Almar et al., Roelvink) uses the full set of
available pixels while the Argus systems (Holman and Stanley, 2007)
greatly reduce the data by collecting pixel intensities on a pre-defined
grid, neglecting pixels situated in-between grid points. The tailored
video settings might play a significant role in the depth accuracy ob-
tained with inversion in the field. Furthermore, few efforts have been
made to compare the performance of inversion models in a more
controlled setting using realistic derived free surface elevations from a
numerical model (Misra et al., 2003). Considering this and to rule out the
tailored video settings, the spectral and temporal methods are compared
against each other through the use of a Boussinesq model (Cienfuegos
et al., 2010). In addition, non-linear inversion is assessed here consid-
ering that the numerical model supplies the wave amplitude information.
In reality, in-situ wave height measurements are required for a non-linear
depth inversion. Cat�alan and Haller (2008), Almar et al. (2012), Flores
et al. (2016) presented a wave height estimation technique from video,
providing the opportunity for non-linear depth inversion without addi-
tional instruments and potentially solves the issue of additional in-situ
measurements.

This work focuses on the comparison between the temporal inversion
method (Almar et al., Roelvink) and spectral method (Holman et al.,
2013). The depth inversion results are compared to wave characteristics
such as non-linearity, asymmetry and skewness. The method and
assessment parameters are further introduced in Section II. Section III
introduces the synthetic cases whereas Section IV is used to interpret the
depth inversion results. Section V is devoted to the discussion of the
performance of the two inversion methods and further extension of the

non-linear capabilities. The analysis is summarised and conclusion are
presented in Section VI.

2. Methods

The temporal and spectral video-based depth inversion techniques
both use of the linear dispersion relation for free surface waves to invert
depths from pixel intensity time-stacks, presented in (1).
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wherein c is wave celerity, t is time, x represents absolute distance, σ is
angular wave frequency, k represents the wave number, g is the gravi-

tational acceleration, h is depth and U
!

represents the mean current. U
!

in
the right-most term of the right-hand side of (1) is considered small
compared to the phase speed of the wave in the direction of wave
propagation. Field measurements carried out by (Merrifield and Guza,
1990) and (Holland, 2001; Holman and Stanley) confirm a minor influ-

ence relative to the phase speed. U
!

is therefore neglected. Note that this
is only valid for open beaches and not the universal truth, e.g. in case of
more complex beaches with for example rip channels this assumption
inherently leads to a depth estimation error (Holman and Stanley;
Bergsma, 2017).

After rearranging the linear dispersion relation for free surface waves
(1), depth can be found as a function of the wave celerity (c) as presented
in (2).
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Following (2), depth inversion requires knowledge of the wave
celerity, either as σ

k, as shown in (1), in frequency space (used in the
spectral method) or Δx

Δt in temporal space (used in the temporal method).

2.1. Spectral method

The spectral depth inversion method cBathy (Holman et al., 2013)
and (Bergsma et al., 2016) is applied in this work. In order to invert
depths using the right-hand side of (2), the spectral approach seeks to
find a wave number (k) and associated frequency (σ). The total cBathy
package consists of three phases. Phase I contains the estimation of N
number of k; σ pairs, whereN is user-defined. The second phase of cBathy
combines the N number of k; σ � pairs into an optimal single estimate for
k and σ through a best weighted-fit with the linear dispersion relation.
Phase III comprises data-assimilation through the deployment of a
Kalman-like filter for error reduction and temporal smoothing. The third
phase is not applied here given that the synthetic cases represent a single
point in time.

Phase I: After a Fast Fourier transformation of a normalised input
pixel time-stack, the spectral matrix is sub-sampled around a point of
interest. In Holman et al. (2013) the sub-sampling domain varies
depending on the distance from the camera, here the sub-sampling
domain fixed. This subset is subsequently used to estimate the depth
around the selected point of interest. For the subset, frequencies are
selected based on their spatial coherence squared, so that only theNmost
coherent frequencies are analysed and corresponding k-values are
sought. Over the subset the cross-spectral matrix is found and subse-
quently filtered by a spatial EOF analysis. The first EOF-mode (υ1) of the
cross-spectral matrix is employed for further analysis as it is believed to
represent a wave train. The corresponding EOF filtered phase υ

0
1,

following the left-hand part of (3), represents the spatial phase ramp of a
wave. The best-fit theoretical phase (the right-hand part in (3)) is found
through a non-linear least squares fitting procedure with Hanning-filter
so that wave number k, wave direction α and phase shift Φ are obtained.
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