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A B S T R A C T

A machine learning framework is developed to estimate ocean-wave conditions. By supervised training of ma-
chine learning models on many thousands of iterations of a physics-based wave model, accurate representations of
significant wave heights and period can be used to predict ocean conditions. A model of Monterey Bay was used as
the example test site; it was forced by measured wave conditions, ocean-current nowcasts, and reported winds.
These input data along with model outputs of spatially variable wave heights and characteristic period were
aggregated into supervised learning training and test data sets, which were supplied to machine learning models.
These machine learning models replicated wave heights from the physics-based model with a root-mean-squared
error of 9 cm and correctly identify over 90% of the characteristic periods for the test-data sets. Impressively,
transforming model inputs to outputs through matrix operations requires only a fraction ð< 1=1; 000th) of the
computation time compared to forecasting with the physics-based model.

1. Introduction

There are myriad reasons why predicting wave conditions is impor-
tant to the economy. Surfers aside, there are fundamental reasons why
knowledge of wave conditions for the next couple of days is important.
For example, shipping routes can be optimized by avoiding rough seas
thereby reducing shipping times. Another industry that benefits from
knowledge of wave conditions is the $160B (2014) aquaculture industry
(FAO, 2016), which could optimize harvesting operations accordingly.
Knowledge of littoral conditions is critical to military and amphibious
operations by Navy and Marine Corps teams. Also, predicting the energy
production from renewable energy sources is critical to maintaining a
stable electrical grid because many renewable energy sources (e.g., solar,
wind, tidal, wave, etc.) are intermittent. For deeper market penetration of
renewable energies, combinations of increased energy storage and
improved energy-generation predictions will be required. The US
Department of Energy has recently invested in the design, permitting,
and construction of an open-water, grid-connected national Wave Energy
Test Facility at Oregon State University (US DOE, 2016). Given that
America's technically recoverable wave-energy resource is up to
1,230 TW-hr (EPRI, 2011), there is a strong interest in developing this
renewable resource (Ocean Energy Systems, 2016). Commercialization
and deployment of wave-energy technologies will require not only

addressing permitting and regulatory matters, but overcoming techno-
logical challenges, one of which is being able to provide an accurate
prediction of energy generation. A requirement for any forecast is that an
appropriately representative model be developed, calibrated, and vali-
dated. Moreover, this model must be able to run extremely fast and to
incorporate relevant forecast data into its predictions. A machine
learning framework for this capability is developed here.

Because wave models can be computationally expensive, a new
approach with machine learning (Goodfellow et al., 2016; LeCun et al.,
2015; Schmidhuber, 2015) is developed here. The goal of this approach
is to train machine learning models on many realizations of a
physics-based wavemodel forced by historical atmospheric and sea states
to accurately represent wave conditions (specifically, significant wave
heights and characteristic period). Predicting these wave conditions at
locations corresponding to a (potential) wave-energy-converter (WEC)
array facilitates accurate power-production forecasts. Given the recent
development of a wave-energy-resource classification system (Haas et al.,
2017), if the wave conditions at a particular location can be predicted,
the power potential for a hypothetical WEC array can be estimated.

Computational expense is often a major limitation of real-time fore-
casting systems (DeVries et al., 2017; Mallet et al., 2009). Here, we apply
machine learning techniques to predict wave conditions with the goal of
replacing a computationally intensive physics-based model by
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straightforward multiplication of an input vector by mapping matrices
resulting from the trained machine learning models. Because matrix
multiplication is an exceedingly rapid operation, the end result is a ma-
chine learning technique that can predict wave conditions with compa-
rable accuracy to a physics-based model for a fraction of the
computational cost. While machine learning has been used to predict
wave conditions (Peres et al., 2015; Makarynskyy, 2004; Etemad-Shahidi
andMahjoobi, 2009; Mahjoobi and Etemad-Shahidi, 2008; Browne et al.,
2006, 2007), it has not been used in the context of a surrogate model as
defined below.

One of the challenges for machine learning applications is their
enormous appetite for data. It is the exception more than the rule that a
machine learning approach has what is considered an optimal amount of
data. However, when developing a machine learning surrogate for a
physics-based model, there is the luxury of being able to run the physics-
based model as many times as necessary to develop a sufficiently large
data set to train the machine learning model. Here, we define a surrogate
model (Razavi et al., 2012) as a data-driven technique to empirically
approximate the response surface of a physics-based model. These have
alternately been called “metamodels” (Blanning, 1975; Kleijnen, 2009),
“model emulators” (O'Hagan, 2006), and “proxy models” (Bieker et al.,
2007). To assemble the training dataset required to develop a robust
machine learning model, the inputs and outputs of many thousands of
wave model runs were accumulated into a suitably large set of input
vectors.

2. Wave modeling

2.1. Numerical model

The Simulating WAves Nearshore (SWAN) V 41.62 FORTRAN code is
the industry-standard wave-modeling tool developed at the Delft Uni-
versity of Technology that computes wave fields in coastal waters forced
by wave conditions on the domain boundaries, ocean currents, and winds
(The SWAN Team, 2006). SWAN models the energy contained in waves
as they travel over the ocean and disperse at the shore. Specifically, in-
formation about the sea surface is contained in the wave-variance spec-
trum, or energy density Eðσ;θÞ, and this wave energy is distributed over
wave frequencies (as observed in an inertial frame of reference moving
with the current velocity) with propagation directions normal to wave
crests of each spectral component.

Action density is defined as N ¼ E=σ, which is conserved during
propagation along the wave characteristic in the presence of ambient
current. Evolution of Nðx; y; t; σ; θÞ in space, x;y, and time, t, is governed
by the action balance equation (Komen et al., 1996; Mei et al., 1989):
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The left-hand side represents the kinematic component of the equa-
tion. The second term (parenthetical) denotes the propagation of wave
energy in a two-dimensional Cartesian space where c is wave celerity.
The third term represents the effect of shifting of the radian frequency
due to variations in water depth and mean current. The fourth term ex-
presses depth- and current-induced refractions. The quantities cσ and cθ
are the propagation speeds in spectral space ðσ; θÞ. The right-hand side
represents the spatio-temporally variable sources and sinks of all physical
processes that generate, dissipate, or redistribute wave energy (i.e., wave
growth by wind, nonlinear transfer of energy through three- and four-
wave interactions, and wave decay due to white-capping, bottom fric-
tion, and depth-induced wave breaking).

Haas et al. (2017) define the wave-energy resource as a function of
the significant wave height,Hs and peak wave period, T. This information
can be used to compute the wave power density. Hence, estimates of peak
period T and, in particular, Hs because J is quadratically related to wave
height, are necessary to predict wave energy potential.

2.2. Model verification

The coastal ocean presents a complex modeling challenge, intimately
connected as it is to both the deep ocean and the atmosphere (Song and
Haidvogel, 1994). Uncertainties in wave forecasting emanate from the
mathematical representation of the system, numerical approximations,
and uncertain and incomplete data sets. Studies demonstrate that the
greatest sources of uncertainty in operational wave forecasting are the
model input data. This study simulates wave conditions subject to real
forcing conditions at a case-study site, Monterey Bay, California. As
summarized in Table 1, the wave model was driven by available NOAA
wave-condition data, archived current nowcasts from the Central and
Northern California Ocean Observing System (CeNCOOS) (Patterson
et al., 2012), and post-processed (i.e., data subject to quality-assurance
procedures) wind data from The Weather Company (2017).

Before developing a machine-learning surrogate for the physics-based
SWAN model, it is important to demonstrate that SWAN can accurately
replicate wave conditions in Monterey Bay so that a training data set can
be developed for the machine learning models. The SWAN model vali-
dated by Chang et al (2016) was used in this effort because it has a
demonstrated track record for accurately simulating wave conditions in
Monterey Bay. The bathymetric data shown in Fig. 1 were obtained from
the NOAA National Geophysical Data Center. The horizontal resolution
in this SWAN model was 0:001∘.

Because SWAN discretizes wave frequencies in its calculations, only a
user-defined number of discrete T values can be returned by a simulation.
Specifically, because this effort is relevant to forecasts for wave-energy
converters, we consider the peak wave period (RTP in the SWAN
model) because this is used in the calculation for wave power (Cahill and
Lewis, 2014). To this end, when building the model the user specifies the
minimum, ϕ1, maximum ϕN, and number of discrete frequencies, N,
which are logarithmically distributed as (The SWAN Team, 2006):

ϕι ¼ ϕι�1 þ ϕι�1
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ϕN
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� 1
� 1
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Note that the logarithmic distribution yields smaller increments be-
tween periods for larger T, which is most relevant for capturing the ef-
fects of long-period waves – those most important for energy generation.
For these simulations, ϕ1 ¼ 0:042 Hz (T1 ¼ 23:8 s) and ϕN ¼ 1 Hz
(TN ¼ 1 s), and N ¼ 24 discrete T values were specified (Chang et al.,
2016). However, only 11 distinct T values were ever calculated by SWAN

Table 1
Data sources.

Data Source URL Resolution

Wave
conditions
(Hs, T, D)

NDBCc,a

Buoy
46042

http://www.ndbc.noaa.gov/
station_page.php?station=46042

36∘4702900

N
122∘270600

W

Wave
conditions
(Hs, T, D)

WAVE
WATCH III
ENP
NCEPb

http://nomads.ncep.noaa.gov:
9090/dods/wave/enp

0:25∘

Ocean currents ROMS
COPSd

http://west.rssoffice.com:8080/
thredds/catalog/roms/CA3000m-
forecast/catalog.html

3 km

Winds TWCd https://api.weather.com/ User
defined

Bathymetry NOAA
NGDCe

https://www.ngdc.noaa.gov/mgg/
bathymetry/hydro.html

0:001∘

a National Data Buoy Center.
b Eastern North Pacific National Centers for Environmental Prediction.
c Regional Ocean Modeling System Cooperative Ocean Prediction System.
d The Weather Company.
e National Geophysical Data Center.
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