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A B S T R A C T

Bayesian networks (BNs) are increasingly being used to model complex coastal processes due to their ability to
integrate non-linear systems, their transparent probabilistic framework, and low computational cost. A BN may be
suited to descriptive or predictive application. Descriptive BNs are highly calibrated models that are useful for
better understanding the physics and causal relationships driving a system. Predictive BNs are generalisations of a
system that have skill at predicting outside of the training domain. The predictive and descriptive usefulness of a
BN depends on its complexity and the amount of data available to train it, but there is often a trade-off; higher
descriptive skill comes at the cost of reduced predictive skill. To demonstrate the differences between predictive
and descriptive BNs in a coastal engineering context, a BN to predict shoreline recession caused by coastal storm
events is developed and tested using an extensive 10-year dataset incorporating 137 individual storms events
monitored at Narrabeen-Collaroy Beach, Australia. A parsimonious approach to BN development is used to
separately determine the optimum predictive and descriptive BNs for this dataset. Results show that for this
dataset two quite different BNs can be developed: one that is optimized to achieve the highest predictive skill, and
a second network that is optimized to maximize descriptive skill. The optimum predictive BN is found to comprise
3 nodes (variables) and can predict the shoreline recession caused by unseen storm events with a skill of 65%. The
optimum descriptive BN is composed of 5 nodes and can reproduce 88% of the training dataset, but with more
limited predictive capabilities. The uses and limitations of these two different approaches to BN formulation are
illustrated with example applications to coastal process modelling. It is anticipated that the insights provided in
this paper will help to clarify the further development of Bayesian Networks applied to coastal modelling.

1. Introduction

Bayesian networks (BNs) are probabilistic graphical models that can
be used to represent causal systems. They model interactions between
variables describing a system using representative datasets and statistics
founded on Bayes’ rule of conditional probability. BNs originate from
artificial intelligence research and are increasingly being used to model
environmental systems (Aguilera et al., 2011). BNs can easily handle
non-linear systems, have low computational cost, can deal with missing
data and data from different sources, explicitly include uncertainties, and
have a simple and intuitive graphical structure that is easily understood
by non-technical users (Chen and Pollino, 2012; Uusitalo, 2007). On the
other hand, BNs depend on the quality of data used to develop them and
require continuous variables to be discretised. For a thorough

introduction into BNs, the reader is referred to Pearl (1988) and Charniak
(1991).

Recently, BNs have been used in a number of coastal engineering
applications, including: predicting episodic coastal cliff erosion (Hapke
and Plant, 2010), reproducing wave-height evolution in the surf zone
(Plant and Holland, 2011), assessing coastal vulnerability to sea level rise
(Gutierrez et al., 2011), predicting barrier island response to storms
(Plant and Stockdon, 2012; Wilson et al., 2015), predicting dune retreat
resulting from coastal storms (Palmsten et al., 2014) and modelling
hurricane damage to urbanised coasts (van Verseveld et al., 2015).

These studies and others have shown that BNs can have considerable
skill modelling a range of complex coastal processes. However, one topic
that is not well clarified in the literature is that BNs may be suited to
descriptive or predictive applications; that is, a BN may be skilful at
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representing and reproducing a unique dataset descriptively, or at gen-
eralising the causal relationships in the dataset such that they are
applicable to predicting unseen data. It is therefore important to clarify
whether the BN purpose is descriptive or predictive as this dictates its
generic applicability. Fienen and Plant (2015) developed a k-fold
cross-validation application using the BN software package Netica
(Norsys Software Corporation, 1995–2017) for assessing the predictive
and descriptive skill of a BN. In k-fold cross-validation a dataset is divided
into k number of folds (or partitions), where k is commonly taken as 10
(Marcot, 2012). A BN is trained and tested on all but 1 fold of the data
(descriptive skill) and then tested on the 1 withheld fold (predictive skill)
for all k permutations of training and testing sets. k-fold cross-validation
is an unbiased way of evaluating model descriptive and predictive skill
(Elsner and Schmertmann, 1994), and is widely applied to test machine
learning models (Refaeilzadeh et al.). Fienen and Plant (2015) and other
recent coastal studies (e.g (Gutierrez et al., 2015; Poelhekke et al.,
2016).,) have used cross-validation to show that predictive skill and
descriptive skill vary with BN model complexity and that there is a
trade-off between the two – better descriptive power usually comes at the
cost of reduced predictive power (Fienen and Plant, 2015; Gutierrez et
al., 2015), resulting in different optimum BN structures for both
descriptive and predictive BN applications.

While cross-validation provides a useful method of distinguishing
between a predictive or descriptive BN model, there remains no standard
procedure to developing the optimum predictive or descriptive model for
a particular dataset (Chen and Pollino, 2012; Marcot, 2012). In coastal
applications to date, the typical approach taken to BN model develop-
ment has been to start with a complete conceptual model of the system
and then iteratively modify and evaluate this structure to investigate
model skill and sensitivity (e.g (Plant and Stockdon, 2012; Wilson et al.,
2015; Palmsten et al., 2014).,). An alternative and more objective
approach that is often used for empirical model development, but has
received less attention in the coastal BN literature to date, is the parsi-
monious approach to model development (Sivapalan and Young, 2005).
The parsimonious model approach builds a model up, from simple to
complex, using only model inputs and causal relations that are justified
and optimised by the available training dataset (Sivapalan and Young,
2005). Such an approach integrates sensitivity analysis into model
development and protects against the model fitting spurious relation-
ships in the data. Practically, parsimonious BNs can be developed by
constructing and evaluating a conceptualised BN model one variable at a
time, based on maximising the descriptive and predictive skill at each
step of construction. This not only allows identification of the optimal
predictive and descriptive variable subsets to use in a BN for a given
dataset but further serves the practical and physically meaningful pur-
pose of identifying how individual variables in the dataset impact the
skill of the model (Sivapalan and Young, 2005).

The aim of this paper is to explore the distinction between descriptive
and predictive BNs in coastal modelling. To this end, a BN to model
shoreline recession caused by coastal storm events is developed and
tested using an extensive 10-year dataset from Narrabeen-Collaroy
Beach, on the southeast coast of Australia. Understanding and predict-
ing the response of the shoreline to coastal storm events remains a focus
of the coastal research community (Holman et al., 2015), having
important implications for both emergency and long-term coastal man-
agement. This is particularly the case for highly-developed, dynamic
sandy coastlines such as Narrabeen-Collaroy Beach, where coastal storm
events can place beachfront infrastructure at risk in the short term
(Harley et al.) and often dominate longer-term patterns of shoreline
change (Harley et al., 2011). BNs offer an appealing method of modelling
the impacts of storm events that differs from the empirical or
process-based model approaches that have typically been used in these
coastal settings (e.g (Davidson et al., 2013; Harley et al., 2009; Kar-
unarathna et al., 2014;Wright et al., 1985; Splinter et al., 2014a).,). Here,
a parsimonious approach to BN development is used to develop the
optimal descriptive and predictive BNs for modelling storm-induced

shoreline change at Narrabeen-Collaroy Beach, followed by a discus-
sion and example applications of how these models can be used in coastal
settings. This paper further serves as an introduction to BNmodelling and
a reference point for understanding other BN studies in the coastal sci-
ence and engineering community.

2. Study site

Narrabeen-Collaroy Beach (hereafter referred to simply as Narra-
been) is a sandy, 3.6 km long embayed beach bounded at its extremities
by rocky headlands. It is situated on the southeast coast of Australia
approximately 20 km north of the centre of Sydney. The beach is
composed of fine to medium quartz sand (D50� 0.3mm), with ~30%
carbonate fraction, and has a typical intertidal slope of 0.12. Its modal
beach state ranges from dissipative-intermediate (wider, flatter beaches
often with bars and adapted to high-energy wave conditions) at the
exposed northern end, to intermediate-reflective (narrow, steeper bea-
ches adapted to lower energy wave conditions) toward the sheltered
southern end (Wright and Short, 1984; Harley et al., 2015a). Tides are
microtidal and semidiurnal with a mean spring tidal range of 1.3m. The
Sydney region has a moderate to high energy deepwater wave climate
characterised by persistent SSE swell waves (Hs¼ 1.6m and Tp¼ 10 s)
that is interrupted by ~5% significant wave height exceedance storm
events (Hs> 3m) typically 10–20 times per year (Short and Trenaman,
1992; Harley et al., 2010). These storm events vary in their origin,
ranging from tropical cyclones from the northeast, east-coast lows from
the east, and mid-latitude cyclones from the south.

Routine monitoring commenced at Narrabeen in 1976, and it is now
one of the longest records of coastline variability worldwide (Turner et
al., 2016). The present study focuses on one aspect of this monitoring
program: 10 years of daily shoreline data spanning 2004–2014 obtained
by an Argus coastal imaging station (Holman and Stanley, 2007). This
coastal imaging station provides coverage of the southern half of the
Narrabeen embayment, of which a 400m alongshore region is used here
(Fig. 1).

3. Methodology

3.1. Bayesian Networks

A BN is a graphical representation of the joint probability distribution
of a system comprised of discrete variables. A very simple illustration of a
hypothetical BN to predict the occurrence of erosion versus accretion as a
response to different combinations of wave height and period is shown in
Fig. 2. The BN consists of nodes representing variables in the system (e.g.,
Wave Height, Wave Period and Beach Response) that are connected with
arcs representing causality between nodes. The arcs and nodes together
are formally known as a directed acyclic graph (DAG), and a node is
termed a parent of a child, if there is an arc directed from the former to the
latter (Pearl, 1988). Each node is discretised into states (e.g., in Fig. 2,
‘Beach Response’ contains the states ‘Erosion’ and ‘Accretion’). Associated
with each node are either prior probability tables (PPTs) for the nodes
that have no parents, or conditional probabilities tables (CPTs) for child
nodes. These tables quantify the probability of a node being in its
particular states. As shown in Fig. 2a, while PPTs are only the same size as
the number of states in a node, CPTs represent the probability of all the
possible combinations of parent and child states for a given node and so
increase in size exponentially:

sizeðCPTÞ ¼ S
Yn
i¼1

Pi (1)

where S is the number of states of the child node, and Pi is the number of
states in the ith parent node. For the BN in Fig. 2, the number of pa-
rameters to estimate is calculated as 2 (Beach Response child states) x 2
(Wave Height parent states) x 3 (Wave Period parent states)¼ 12
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