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A B S T R A C T

Information on the wave climate at a particular location is essential in many areas of coastal engineering
from the design of coastal structures to flood risk analysis. It is most commonly obtained either by direct
measurements or hindcast from meteorological data. The extended deployment of a wave buoy to directly
measure wave conditions and the application of wave transformation models used in hindcasting, including
public domain models such as Wavewatch and SWAN, are both expensive. The accuracy of the results given
by the latter are also highly sensitive to the quality of the wind data used as input. In this paper a new copula-
based approach for predicting the wave height at a given location by exploiting the spatial dependence
of the wave height at nearby locations is proposed. By working directly with wave heights, it provides an
alternative method to hindcasting from observed or predicted wind fields when limited information on the
wave climate at a particular location is available. It is shown to provide predictions of a comparable accuracy
to those given by existing numerical models.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In a standards-based approach, structures are designed to with-
stand an event of a given severity. For coastal structures an event is
traditionally characterised by a significant wave height and its sever-
ity defined in terms of a return period. The return period is defined as
the average time elapsing between two consecutive occurrences of a
prescribed event. In order to uncover the significant wave height cor-
responding to a given return period, information on the local wave
climate is required. Depending on the available budget and richness
of wave data in the locality a range of approaches exist for obtain-
ing such data including long term deployment of a wave buoy, short
term deployment and subsequent hindcasting to give a sufficiently
long record of the local wave climate or the use of wave data from a
nearby location. Taking advantage of the increase in readily available
computational power and advances in the modelling of the structure
of the dependance between non-independent random variables over
the last couple of decades, this work presents an alternative method
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for deriving design conditions which has the potential to outperform
the existing approaches.

Extensive networks of wave buoys are in place along many pop-
ulated coastlines where flood risk is actively managed. To name but
two, the Channel Coastal Observatory (CCO) maintains a network of
around 40 wave buoys along the UK coast with the National Oceanic
and Atmospheric Administration’s (NOAA) National Data Buoy Cen-
ter maintaining a similar network of over 100 wave buoys in the
USA. Some wave buoy deployments such as these are, in principle,
intended to be permanent with the requirement for regular main-
tenance. In others a wave buoy may be deployed for a short period
of time to gather wave data in a new or critical location over a few
seasons or years. The wave time series from these can be used to
calibrate numerical hindcast models driven by meteorological forc-
ing, or to validate wave transformation models driven by other wind
and wave data. In both cases, the existing data sets may need to be
extended, either because of missing data created by a damaged or
vagrant buoy or because observations at a temporary site are not
sufficient to build an accurate model for localised extremes.

It is reasonable to assume that observations of wave fields gen-
erated by the same physical processes in the same region, should be
correlated. These observations made along the same natural coast-
line will be modified by variation of the direction and degree of expo-
sure and variability in the wave transformation processes created by
the variable bathymetry. Local generative processes may also prove a
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reason for variability. By exploiting and modelling such correlations
between the wave height observed at a given location and at two or
more neighbouring locations, the proposed approach offers a sim-
ple and computationally efficient alternative method for generating
missing or extended data at a site of interest. In the case of extremes
analysis, buoys frequently malfunction during energetic events so
such an approach would be useful to infer the absent extreme values.

In the case of buoy networks, once the correlations are suitably
determined a virtual wave buoy model will have been created, an
idea postulated in Londhe (2008). This might enable a reduction
in the number of buoys, or allowing the swapping in and out of
buoys during a programme of maintenance with minimal loss of
measurement system accuracy. Removed wave buoys might also be
redeployed at other locations. The method thus promises a means for
increasing the detailed knowledge of wave climate along a stretch of
coast by removing redundant measurements.

In each of the applications discussed so far our interest lies in the
extreme values of these variables. Extreme values of the variables
concerned are modelled through fitting extreme value distributions
to the observed extremes (Section 2). With longer length of data
sets more extreme values are likely to be captured leading to more
accurate definition of the return periods. However, due to time and
financial constraints the long term deployment of a wave buoy is
often not practical and therefore other means of deriving the local
wave conditions have been contrived. For coastal areas where no
data is available, historic offshore wave conditions are commonly
derived from records of the local wind field, a process referred to as
hindcasting. Originating in the 1940s and 50s with simple empiri-
cal models such as SMB and SPM, today computationally intensive
numerical wave transformation models such as WAM (WAve Mod-
elling) (WAMDI group, 1988), Wavewatch III (Tolman, 1991) and
SWAN (Simulating WAves Nearshore) (Booij et al., 1999) dominate
the field. These models work on the principal that most statistical
properties of wind waves are captured in their wave energy or action
spectrum. Assuming the principle of linear superposition, observa-
tions of the water surface at a given location can be decomposed
into a spectrum of wave energy as a function of frequency. With
additional local observations, a two dimensional spectrum can be
constructed to describe the directional variation of the wave energy
spectrum. These are used in spectral wave models. The action spec-
trum is the energy spectrum divided by the intrinsic frequency of
the spectral components. The models numerically integrate the wave
energy or action transport equation which governs the evolution in
space and time of their respective spectra to predict future wave
conditions at different locations.

Numerical wave models such as WAM and Wavewatch were
developed primarily for predicting deep ocean wave conditions
where the waves are mostly wind driven. The source terms present
in the transport equations represent the physical processes that can
result in generation, dissipation, or redistribution of wave energy.
For the WAM model, inputs required for the source terms include
wind data, information on non-linear (Quadruplet) wave-wave inter-
actions and white capping dissipation. On the other hand, numerical
models such as SWAN were developed for predicting nearshore wave
conditions. This includes not only each of the source terms present
in deep water models but also terms for triad wave–wave interac-
tions which become much more significant than the higher order
wave-wave interactions in the nearshore region. It also includes a
term to account for depth induced breaking which can lead to a sig-
nificant reduction in the maximum significant wave height in coastal
regions. The SWAN model uses the wave action spectrum rather than
the wave energy spectrum since, in contrast to the energy spectrum,
it is conserved in the presence of currents thus allowing the effect
of a mean current on the evolution of the wave field to be included
in the modelling. In practice, to take advantage of both models,
it is common for the generated wave field from a WAM model

to subsequently form the boundary conditions for a higher resolu-
tion wave transformation model, such as SWAN for propagating the
waves inshore (Wornom et al., 2001).

The accuracy of the hindcast offshore wave conditions are highly
dependent on the accuracy of the data on the forcing wind field
(Holthuijsen et al., 1996; Moeini et al., 2010; Teixeira et al., 1995).
These wave fields are derived from the measured wind fields and
act as the primary input for the prediction of the coastal wave con-
ditions. Thus, the quality of the predicted coastal conditions relies
on accurate descriptions of the forcing wind field. Also, the exer-
cise of assimilating the data and running numerical wave models,
which may involve, long run times and multiple sensitivity analy-
ses to validate the output, makes such an exercise non-trivial and
often significantly costly. In order to reduce the computational cost
meta-models, that are simplified approximations of computation-
ally intensive models, have found favor. For example, Camus et al.
(2011) developed a model that uses radial basis functions as a meta
model for SWAN. Other methods for reducing the computation bur-
den include coupling numerical and soft computing techniques as is
done in Malekmohamadi et al. (2008) by way of WAM and a neu-
ral network. Again, this can require a considerable time and cost, but
once set up, these models can run very efficiently.

In addition to the finite available computational power, these
deterministic modelling approaches are also hampered by a lack of
knowledge of the physical processes that generate waves, the inter-
related parameters that drive them as well as insufficient detail
concerning the modelled region. Moreover, wave energy spectrum-
based models are believed to be reaching the limits of the accuracy
with which they can simulate wave hydrodynamics (Liu et al., 2002).
Any further improvements are likely to occur at a much slower pace
than in the past and these may not lead to any practical improve-
ment to the accuracy of their predictions (Cavaleri et al., 2007). In
reality, even if substantial advancements were made in capturing the
detail of physical processes and their interactions, the complexity of
the situation will limit deterministic prediction.

In acknowledgment of the uncertainties associated with physics
based models, over recent decades scientists have started to con-
sidere the problem probabilistically. Although not normally consid-
ered to be a Gaussian process, Gaussian models of varying com-
plexity were the first to be investigated (Cunha and Soares, 1999;
Scotto and Soares, 2000; Soares et al., 1996). More recently soft
computational techniques that can be applied directly to observa-
tions have become increasingly popular. Artificial Neural Networks
(ANN’s) are perhaps the most widely adopted of these techniques.
ANN’s aim to mimic how biological neural systems such as the
human brain process information. They consist of a set of intercon-
nected processing units or nodes, and a set of weightings along the
connections or synapses, that are analogous to synaptic strength.
The arrangement of the nodes are prescribed by the user with the
weights adjusted through a learning or training procedure. This ref-
erences a cost function so that the relationship between the input
stimuli and the output responses becomes optimised. They have
been shown to outperform the auto regressive models when fore-
casting wave heights (Deo and Naidu, 1998). As such they have
prevailed as the dominant approach for prediction using either pre-
vious wave height observations at a location (Deo and Naidu, 1998;
Gopinath and Dwarakish, 2015; Hadadpour et al., 2014; Londhe
and Panchang, 2006; Mandal and Prabaharan, 2006) or wind wave
data (Deo et al., 2001; Kamranzad et al., 2011; Malekmohamadi et
al., 2008). They have also been applied to improve the accuracy of
physics based process models (Zhang et al., 2006). Other soft com-
putational approaches such as genetic programming (Gaur and Deo,
2008; Nitsure et al., 2012), fuzzy inference systems (Kazeminezhad
et al., 2005; Özger and Şen, 2007) and support vector machines
(Mahjoobi and Mosabbeb, 2009) have also been shown to provide
useful predictions (Malekmohamadi et al., 2011). For a more detailed
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