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A B S T R A C T

Recent studies suggest that the tsunami speed can be slowed down by around 1% due to Earth elastic-
ity, water compressibility and density stratification. Analytical solutions of wave dispersion relationship,
accounting for such effects, were found in previous studies. In this paper, we investigate the additional
effects of water viscosity, ocean stratification due to temperature/salinity and numerical dispersion. Theo-
retical solutions are derived and checked with known solutions. All the formulas are then simplified for long
tsunamis waves so that the propagation speed can be calculated explicitly. The simplified solutions are eval-
uated using realistic geophysical parameters. For a typical tsunami wavelength of ∼200km, the viscous effect
is found to be negligible; ocean stratification due to temperature/salinity causes significant speed reduction
because of the high density change rate, which has been ignored before. We also evaluate the numerical
dispersion of tsunami simulations, which is shown to be potentially comparable to physical dispersion.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

From recent large tsunami events it has been observed that
there exists a systematic delay of arrival time compared to the pre-
diction of shallow water wave equations (e.g., Rabinovich et al.,
2011; Wei et al., 2008; Hébert et al., 2009; Saito et al., 2010; Kato
et al., 2011; Fujii and Satake, 2013; Kimura et al., 2013; Watada
et al., 2014). Watada et al. (2014) summarized the observations and
showed that the discrepancy between observation and prediction,
which has the order of around 1%, can be explained by the effects
of Earth elasticity, water compressibility and geopotential variations.
Previous studies have led to the theoretical solutions accounting
for one or more of those effects. Mallard et al. (1977) studied the
problem of water waves propagating over an elastic bed, using a
model that consists of a single layer of incompressible potential fluid
over half-space homogeneous elastic earth. The dispersion relation
of the small amplitude water waves in such a model was given.
Dawson (1978) reviewed the problem but took into account the
solid inertia and suggested its importance for cases that include
thick soft sediment. Dalrymple and Liu (1978) studied the problem
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of viscous water waves propagating over a mud bottom using a
perturbation method, and derived the dispersion relation and the
decay rate of wave amplitude. Ward (1980) presented the theory
of tsunami generation and propagation on a spherically symmetric,
self-gravitating, elastic Earth in terms of normal modes. Okal (1982)
studied the asymptotic behavior of the gravity modes of an incom-
pressible spherical oceanic layer surrounding a rigid Earth, as its
radius goes to infinity. Okal showed that the flat-layered ocean
tsunami solution and its dispersion is an asymptotic limit of the nor-
mal modes of a spherical oceanic shell and that only one branch of
tsunami modes exists. Comer (1984) considered water waves in an
incompressible fluid within a uniform gravitational field overlying
an elastic earth in which the gravitational forces are ignored. Comer
concluded that elastic forces are far more important than inertia and
they also derived the dispersion relation for the water waves when
the Poisson’s ration of the Earth is 0.25. Panza et al. (2000) derived
solutions for a model with multi-layered compressible inviscid fluid
on top of a multi-layered solid half-space Earth, with the compress-
ibility of the fluid treated as elastic solid. Tsai et al. (2013) derived
theoretical tsunami propagation speeds accounting for Earth elastic-
ity and water compressibility and stratification based on a method of
conservation of potential and kinetic energy. Watada (2013) derived
the theoretical dispersion relationship accounting for water com-
pressibility and ocean stratification due to compression of gravity.
Allgeyer and Cummins (2014) conducted numerical simulations to
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investigate the effects of elastic Earth. Watada et al. (2014) investi-
gated the data from the 2010 Chilean and 2011 Tohoku tsunamis and
showed that the systematic arrival time delay could be explained by
the effects of Earth elasticity, water compressibility and geopotential
variations.

In this study, we use a method which is slightly different
from Watada (2013) to investigate additional secondary effects on
tsunami propagation speeds, i.e., the water viscosity and ocean strat-
ification due to temperature/salinity. For completeness the known
second order effects, such as the Earth elasticity and water com-
pressibility will be included in the solutions. In addition, we simplify
all the theoretical dispersion relationships under the assumption of
long waves so that the tsunami propagation speeds can be calcu-
lated explicitly. The simplifications are verified for typical tsunami
wavelength of 50–1000 km (or wave period 260–5000 s) using
realistic geophysical parameters. The relative importance of the sec-
ond order processes in affecting the tsunami propagation speeds
are assessed. Finally, the numerical dispersions of typical tsunami
simulating algorithms are evaluated and compared with the above
physical effects.

2. Governing equations and boundary conditions

We consider 2D problems in x and z, with x in the horizontal
direction to the right and z pointing upwards (Fig. 1).

2.1. Fluid

The linearized governing equations for compressible fluids are
derived from the complete Navier-Stokes equations by assuming
slight compressibility. They are written as:
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Fig. 1. The 2D model: a tsunami wave g(x, t) is propagating over an elastic bed.
The z axis origins at the seabed and points upwards; the x axis is in the horizontal
direction. The ocean is assumed to be stratified with two layers, with the background
density and water depth denoted as (q01 , h1) and (q02 , h2), respectively. The total water
depth h = h1 + h2. The fluid is assumed to be viscous and slightly compressible, with
constant bulk modulus B and viscosity l f; Earth is elastic with Lamè constants ks and
ls . The constant gravitational acceleration is g.

where u(x, z, t) and w(x, z, t) are horizontal and vertical velocities,
sxz and szz are components of the stress tensor, l f is the fluid
viscosity and B is the bulk modulus of the fluid. The subscript f
of lf is omitted for simplicity. The subscript is used to distinguish
between the viscosity in the fluid l f and the shear modulus in the
solid ls only when necessary. The total pressure p is defined as
the sum of static pressure p0 and dynamic pressure p1 : p(x, z, t) =
p0 (z) + p1 (x, z, t); and the total density q is defined as the sum of the
background density q0 and density perturbation q1 due to pressure
change: q(x, z, t) = q0 (z) + q1 (x, z, t). It is required that dp0 (z)/dz =
−q0 (z)g.

Note that it has been assumed that the bulk modulus is constant
and that the fluid is only slightly compressible, i.e., q1 (x, z, t) � q0 (z)
and B = qdp/dq, so we have dq/dt = (q/B)dp/dt, which leads to, by
keeping only the leading order terms,
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where I is the identity tensor. The equations are similar to those
proposed by Watada (2009), but the shear stress components are
included in order to evaluate the viscous effects.

Adopting a plane wave solution in x direction, we have
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where A, k and y are the constant wave amplitude, wave number and
angular frequency respectively. Substituting the assumed solution
(4) into the governing Eq. (1), we obtain a set of first order differential
equations:
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